АКАЛЕМИЯ НАУК СССР

ордена ленина ФИЗИЧЕСКИЙ ИНСТИТУТ имени П. Н. Лебедева

Оптика и спектроскопня Оптическая лаборатория

Препринт # 16

Н.С.Абдуллоев, В.С.Горелик, Б.С.Умаров Эффектиеная мягкая мода в колебательных

CHERTPAL HHOBATA H TAHTAHATA JUTHE.

Москва - 1982

Оптика и опектроскопия

Препринт # 16

Н.С.Абдуллоев, В.С.Горелик, Б.С.Умаров Эффективная мягкая мода в колебательных спектрах ниобата и танталата лития.

Москва - 1982

BREITEHNE

Согласно современным теоретическим представлениям / I-3 / диэлектрические аномалии волизи температуры Кори Т_с в сегнетовлектрических кристаллах связаны с "размягчением" (уменьшением частоты) одного или нескольких поперечных оптических колебаний кристаллической решетки.

В кристаллах типа ниобата лития для T < T_с такой вывод может быть проиллюстрирован с помощью известного соотношения:

$$\frac{\mathcal{E}_{oz}}{\mathcal{E}_{ooz}} = \int_{j=1}^{4} \frac{\mathcal{V}_{c_j}^{z}(A_1)}{\mathcal{V}_{o_j}^{z}(A_1)} : \qquad (1)$$

Здесь \mathcal{E}_{oZ} , \mathcal{E}_{ooZ} - значения статической ($\mathcal{Y} = 0$) и высокочастотной ($\mathcal{Y} \gg \mathcal{V}_{0}$, \mathcal{V}_{0j}) диэлектрической проницаемости в направлении оптической оси Z кристалла; \mathcal{V}_{0} и \mathcal{V}_{0j} - частоты продольных и поперечных колебаний полносимметричного типа A_{I} , соответствующих осщиллящиям дипольного момента примитивной ячейки в направлении оси Z. При этом значение частот \mathcal{V}_{0j} , связанные с эффективными продольными зарядами, должны мало изменяться при приближении к температуре T_{c} , а возрастание \mathcal{E}_{oZ} (в I) обусловлено уменьшением \mathcal{V}_{0j} .

Экспериментальные исследования колебательных спектров ниобата и танталата лития проводились ранее во многих работах / 4-10 /. В частности, работы / 6-10 / посвящены исследованиям колебаний кристаллических решеток этих кристаллов методом комбинационного рассеяния (КР). При этом вдали от точки Кори были однозначно отождествлены фундаментальные колебания, которые в дальнейшем мы будем обозначать IA_I, 2A_I, 3A_I и 4A_I. Однако, как выяснилось, в спектре КР не обнаруживается обращения в нуль ни одного из фундаментальных A_I-колебаний при приближении температуры кристалла к T_C. Изменения в наблюдаемых спектрах при этом носят довольно сложный характер. Обнаруживается сильное увеличение ширины и изменение контуров следовать низкочастотные А_I-спектры КР ниобата и танталата лития и вняснить вклад дополнительных колебательных состояний в статическую диалектрическую проницаемость \mathcal{E}_{ext} .

2. Методика эксперимента

В эксперименте использованись ориентированные монокристалын ниобата и танталита лития, вырезанные в виде параллеленицедов с размерами 3 x 6 x 9 мм³. Регистрация спектров КР проводилась по обичной схеме, с использованием геометрии рассеяния X(ZZ)y, для которой в соответствии с правилами отбора должны проявляться A_{T} -колебания. Температурные измерения проводились с помощьв высокотемпературной оптической коветь, позволяещей проводить измерения до 1400 К при точности измерения температуры I К при низких температурах и 3-5 К при высоких температурах кристалиа.

Возбуждение спектров КР осуществлялось с помощью линии генерации $\lambda = 5145$ % аргонового лазера. Запись спектров КР проводилось на спектрометре ДФС-I2 с использованием усилителя переменного тока с синхронным детектором. Применение синхронного детектирования в данном случае имеет принципиальное значение, так как это позволяет устранить сплошной фон теплового излучения, возникающего за счет овечения кристаллов при высоких температурах. Спектральная ширина щели при регистрации спектров составляла I-2 см^{-I}. В случае LiNbO₃ спектри бнии записани в интервале температур 300-I225 К. При более высоких температурах сильно возрастало поглощение возбуждающего и рассеянного излучения в кристалле, что затрудняло регистрации спектров. Для кристаллов LiTa O₃ спектри КР записывались в диапазоне температур 300-925 К, включая точку фазового перехода кристална (T₀ = 898 K).

Э. Результаты эксперимента

На рис. I и 2 приводятся полученные спектры обсуждаемых кристаллов в области частот 0;300 см^{-I}. Как видно из этих рисунков, спектры КР для обоих кристаллов оказываются весьма похожина.

Остановимся на анализе набладаемых изменений в спектрах КР танталата лития. При комнатной температуре в спектре КР этого кристалла присутствуют два фундаментальных колебания (IA_I и 2A_I) с частотами 206 и 256 см^{-I} соответственно. На рис. I они отмечени сплошными стрелками. Кроме того, при этом в области более низких частот обнаруживаются два слабих дополнительных максимума, а также имк I42 см^{-I} (отмечен звездочкой), обусвовленный Е-колебанием и возникающий за счет неточности установки криоталия и поляривационных устройств.

С повышением температуры обсуддаемого кристалла обнаруживается сильное уширение всех наблюдаемых комбинационных спутников в небольшое уменьшение частоты фундаментальных колебаний. При этом для низких температур температурный сдвиг $2A_{\rm I}$ -волебания оказывается больше, чем $IA_{\rm I}$, так что соответствующие максимумы КР начинают приближаться друг к другу (см. рис. I). При дальнейнем повышения температуры (T=673 K) температурный одвиг максимума $2A_{\rm I}$ резко уменьшается, а $IA_{\rm I}$ - увеличивается.

Что касается дополнительных максимумов, то их интенсивность быстро увеличивается с повышением температуры кристалия, затем становится сравнимой с интенсивностью фундаментальных колебаний, а потом и превышает ее.

Сдвиг частоты дополнительного состояния сначала является незначительным, а затем (начиная с Т = 550 К) становится гораздо божее сильным. При высоких температурах обнаруживается таже "передаче"

температурного сденга от одного дополнительного состояния к другому.

В непосредственной близости от точки фазового перехода воледствие сильного перекрития дополнительные максимумы оказываются едва различимыми на низкочастотном "крыле", простиралениюя в инрокой облаоти спектра (0;200 см⁻¹).

Аналогичная нартина наблодается такие в случае кристалие нисбата лития (см. рис. 2).

4. Обсуждение полученных результатов и выволы

Основнваясь на подученных экспериментальных результатах, мы постронли температурные зависныости частот фундаментальных и дополнительных колебаний. На рис. З и 4 приводятся соответствущие графики для кристаллов ниобата и танталата лития. Как видно из этих рисунков. частоты фундаментальных колебаний в ниобате и танталате лития не обращаются в нуль при прибликении температуры кристалла к Т... В то же время обнаруживается неравномерный сдвит частот с температурой для обсуждаемых колебаний. Из приведенных зависимостей можно заключить, что сначала (при низких температурах) роль мяткой моды принимает на себя 2А,-колебание, затем это колебание передает эстафету "мягкости" ІА,-колебанию, а при более высоких температурах роль мягкой моды поочередно приобретают дополнительные колебания, проявляющиеся в области низких частот. Таким образом, в определенном смысле можно говорить об эффективной мяткой моде, частота которой изменяется от 256 см⁻¹ в случае танталата лития и от 273 см-І в случае ниобата лития при комнатной температуре до малых значений вблизи температуры Т...

На рис. З и 4 пунктирными линиями показаны графики температурной зависимости эффективной мягкой моды, построенные с использованием соотношения вида:

$$\mathcal{V}_{oj}^{2} = A \left(T_{c} - T \right)^{\delta}$$
⁽²⁾

где V_{0j} - частота соответствующей эффективной мягкой моди, $A \le J$ -коэффициенты. Значения коэффициентов $A \le J$ были получены из экспериментальных эначений частот (рис. $3 \le 4$). При этом решалась система двух уравнений (2) с двумя неизвестными $A \le J$. В случае танталата лития имеет место ($T_c = 898$ K); $V_{01} = 256$ см⁻¹; $T_I =$ 300 K; $V_{02} = 103$ см⁻¹; $T_2 = 773$ K. Для ннобата лития соответственно имеет место ($T_c = 1400$ K): $V_{01} = 273$ см⁻¹; $T_I = 300$ K; $V_{02} =$ 143 см⁻¹; $T_2 = 1050$ K. Найденные значения коэффициентов равны: A = 25,24, J = 1,23 для танталата лития и A = 20,70, J = 1,17для ннобата лития. Как видно из рис. $3 \le 4$, пунктирные кривые, построенные на основе (2) могут рассматриваться как огибающие к экспериментальным кривым (сплошные линия) в области низких частот.

В соответствии с (I) и (2) выражение для статической диэлектрической проницаемости может быть записано в виде:

$$\mathcal{E}_{oz} = \mathcal{E}_{ooz}^{+} \frac{G}{(T_c - T)^{\delta}}, \qquad (3)$$

где $\mathcal{E}_{oZ} = 46$, $\mathcal{E}_{oCZ} = 4,9$ / I5 / для танталата лития и $\mathcal{E}_{oZ} = 26$, $\mathcal{E}_{oCZ} = 5,3$ / 6 / для ниобата лития при комнатной температуре (T = 300 K). С использованием различных значений коэффициента \mathcal{F} были вычислены соответствующие значения величин C при комнатной температуре. При этом было получено: $\mathcal{F} = 0.80, C = 0.06.10^5$; $\mathcal{F} = 0.90, C = 0.13.10^5$; $\mathcal{F} = 1.00, C = 0.24.10^5$; $\mathcal{F} = 1.11$, $C = 0.5.10^5$; $\mathcal{F} = 1.23, C = 1.14.10^5$; $\mathcal{F} = 1.40, C = 3.17.10^5$ – для танталате лития и при: $\mathcal{F} = 0.90, C = 0.11.10^5$; $\mathcal{F} = 1.00, C = 0.22.10^5$; $\mathcal{F} = 1.17, C = 0.75.10^5$; $\mathcal{F} = 1.25, C = 1.3.10^5$ – для ниобата лития. Затем были построены кривые температурной зависимости статической дивлектрической проницаемости \mathcal{E}_{oZ} (T) по формуле (3) для различных козффициентов \mathcal{J} . Соответствующие кривне представлени на рис. 5 в 6 в виде сплошних линий. Как нидно из этих рисунков, наилучшее согласие результатов расчета \mathcal{E}_{OZ} (Т) с прямение измерениями / I5, I6 / получаются для значений \mathcal{J} , равных I,23 для танталата лития и I,I7 для нисобата лития совпадающих со значениями, соответствующими пунктирной кривой рис. 3 и 4.

Заключение

Выполненное исследование показывает, что температурная зависписоть статической дизлектрической проницаемости в широком шитервале температур, включающем температуру сегнетоэлектрического фазового перехода, может быть представлена в виде простого соотношения (З). Такое соотношение совпадает с аналогичной зависимостью, характерной для двухатомного кубического кристалла с одной мягкой модой. Таким образом, в рассматриваемом случае можно говорить об эффективной мягкой моде, ответственной за сегнетоэлектрический фавовий переход. Температурная зависимость параметров эффективной мягкой моди получается из анализа температурного сдвига частот А₁колебаний в рассматриваемых кристаллах.

Іптература

- 1. В. Л. Гинзбург. УФН, <u>38</u>, 490, 1949
- 2. В.Л.Гинзбург, А.П.Леванок. 1379, 39, 192, 1960
- 3. W. Cochran. Adv. Phys. 9, 384, 1960.
- 4. J. P. Kaminov, W. D. Johnston. Phys. Rev. 160, 519, 1967.
- 5. A.S. Barker, Jr., A.A. Ballman, J.A. Ditzenberger. Phys. Rev. <u>B2</u>, 4233, 1970.
- 6. R. Claus, G. Borstel, E. Wiesendanger, L.Z. Steffan. Naturforschung. 27a, 1187, 1972.
- 7. A.F. Penna, A.S. Chaves, R da P. Andrade, S.P.S. Porto. Phys. Rev. <u>B</u>13, 4907, 1976.
- 8. A.F. Penna, S.P.S. Porto, A.S. Chaves. Proc. of the third. Intern. Conf. on Light Scett. in Solids. Campines. Brasil. 1975, p.890.
- 9. С.В.Иванова, В.С.Горелик, Б.А.Струков. Пропринт ФИАН 5 124, оптика и спектроскопия, М., 1978, 17 с.
- 10.В.С.Горелик, С.В.Иванова, М.П.Кучерук, Б.А.Струков, А.А.Халезов. ФТТ. 18, 2297, 1976
- II. W. D. Johnston, J.P. Kaminov. Phys. Rev. 160, 1046, 1967.
- 12. B.M.Arpanosay, N.N.Janos. WTT, 13, 1032, 1971
- 13. J. Ruvalds, A.K. Zavadovski. Phys. Rev. B2, 1687, 1970.
- 14. В.С.Горелик. Дисс. доктора физ.-мат. наук, М., 1976
- 15. T. Yamada, N. Niizeki, H. Touda. J. Appl. Phys. 7, 292, 1968.
- 16. G. A. Smolenski, N.N. Krainik, N.P. Khuchua, V.V. Zhdanove, and I.E. Mylnikova. Phys. Stat. Sol. 13, 309, 1966.

Рис. З. Температурная зависимость частот фундаментальных колеоаний и дополнительных макоимумов танталата лития (пунктирной линией показан ход эффективной мяткой моды).

Рис. 4. Температурная зависимость частот фундаментальных колебаний и дополнительных максимумов ниобата лития (пунктирной линией показан ход эффективной мягкой моды).

Рис. 5. Температурная зависимость статической диалектрической проницаемости танталата лития. Пунктирная линия (I) соответствует прямым измерениям / 15 /, сплотные линии соответствуют расчету для: $\mathcal{J} = I,40(2); I,23$ (3); I,II (4); I,00(5); 0,90(6); 0,80(7).

Рис. 6. Температурная зависность ставической дизлектрической проницаемости ниобата лития. Пунктирная линия (I) соответствует прямым измерениям / I6 /, сплонные линия соответствуют расчету для: **У** = 1,25 (2); 1,17 (3); 1,00(4); 0,90(5).