

ISSN 2410-4914

препринт 16

И.А. БУДАГОВСКИЙ, А.С. ЗОЛОТЬКО, М.П. СМАЕВ, С.А. ШВЕЦОВ, Н.И. БОЙКО

ФОТОИЗОМЕРИЗАЦИЯ НИЗКО-И ВЫСОКОМОЛЕКУЛЯРНЫХ ПОГЛОЩАЮЩИХ СОЕДИНЕНИЙ В НЕМАТИЧЕСКОЙ МАТРИЦЕ И ИХ ВЛИЯНИЕ НА ОРИЕНТАЦИОННУЮ НЕЛИНЕЙНОСТЬ

Препринты ФИАН им. П. Н. Лебедева

ISSN 2410-4914

Главный редактор В.И.Ритус, *зам. главного редактора* А.А.Гиппиус, *научный секретарь* С.А.Богачев, *ответственный секретарь* Л.В.Селезнев

Редакционная коллегия: В.С.Бескин, А.А.Горбацевич, О.Д.Далькаров, Е.И. Демихов, И.Г.Зубарев, К.П.Зыбин, А.А.Ионин, Н.Н.Колачевский, Е.Р.Корешева, С.Ф.Лихачев, А.С.Насибов, И.Д.Новиков, В.Н.Очкин, Н.Г.Полухина, В.С.Лебедев, Н.Н.Сибельдин, Д.Р.Хохлов, С.А.Чайковский

Информация

Препринты ФИАН им. П. Н. Лебедева издаются с 1964 г.

Издатель: Федеральное государственное бюджетное учреждение науки Физический институт им. П. Н. Лебедева Российской академии наук (ФИАН)

Адрес редакции: Россия, 119991 Москва, Ленинский просп., 53, ФИАН Тел.: +7 (499) 132-6137, +7 (499) 783-3640; E-mail: *preprins@sci.lebedev.ru, irinakh@sci.lebedev.ru*

Страница сборника «Препринты ФИАН им. П. Н. Лебедева» в интернете: *http://preprints.lebedev.ru/*

© Физический институт им. П. Н. Лебедева РАН, 2015

РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ ИМ. П.Н. ЛЕБЕДЕВА

И.А. Будаговский, А.С. Золотько, М.П. Смаев, С.А. Швецов, Н.И. Бойко

ФОТОИЗОМЕРИЗАЦИЯ НИЗКО- И ВЫСОКОМОЛЕКУЛЯРНЫХ ПОГЛОЩАЮЩИХ СОЕДИНЕНИЙ В НЕМАТИЧЕСКОЙ МАТРИЦЕ И ИХ ВЛИЯНИЕ НА ОРИЕНТАЦИОННУЮ НЕЛИНЕЙНОСТЬ

<u>№</u> 16

Москва 2015

Фотоизомеризация низко- и высокомолекулярных поглощающих соединений в нематической матрице и их влияние на ориентационную нелинейность

 И.А. Будаговский¹, А.С. Золотько¹, М.П. Смаев¹, С.А. Швецов^{1,2}, Н.И. Бойко³
 ¹Физический институт им. П.Н. Лебедева РАН, Москва, Ленинский пр. 53
 ²Московский физико-технический институт, Московская область Долгопрудный, Институтский пер. 9
 ³Московский государственный университет им. М.В. Ломоносова, Москва, Ленинские горы 1

Проведено сравнительное исследование фотоконформационной активности азобензольных добавок (дендримера и мономера, аналогичного по строению терминальным фрагментам дендримера) в нематической матрице и ориентационной нелинейности этих жидкокристаллических систем. Определены доли изомеров при возбуждении азодобавок лазерным пучком. Оценены вклады в нелинейность каждого из изомеров.

Photoisomerization of Low- and High-Molar-Mass Light-Absorbing Compounds in Nematic Host and their Effect on Orientational Nonlinearity

I.A. Budagovsky¹, A.S. Zolot'ko¹, M.P. Smayev¹, S.A. Shvetsov^{1,2}, N.I. Boiko³

¹Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr. 53, Moscow, 119991, Russia

²Moscow Institute of Physics and Technology, Dolgoprudny, Institutskiy per. 9, Moscow oblast, 141700, Russia

³Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia

Comparative studies of the photoconformational activity of the azobenzene dopants (a dendrimer and a monomer similar in structure to the dendrimer terminal fragments) in a nematic host and orientational nonlinearity of these liquid crystal systems were carried out. Isomer fractions under laser light exposure were determined. Contributions of each isomer to orientational nonlinearity were estimated.

ВВЕДЕНИЕ

Использование поглощающих добавок (~ 0.1 % по массе) может приводить к значительному увеличению ориентационной оптической нелинейности нематических жидких кристаллов (НЖК) [1-3]. В таких жидкокристаллических системах, помимо действия светового поля на индуцированные диполи молекул НЖК, возникает вращающий момент, связанный с ориентационно-селективным возбуждением молекул красителя и изменением их взаимодействия с окружающими молекулами НЖК. Оптический вращающий момент, действующий на директор поглощающего (легированного красителями) НЖК, можно представить, в виде $\Gamma_{dye} = \eta \Gamma_{tr}$, где η – фактор усиления, Γ_{tr} – вращающий момент для нелегированного (прозрачного) НЖК. Фактор усиления η вращающего момента определяет значение оптической нелинейности поглощающего НЖК.

В случае фотоконформационно активных поглощающих соединений фактор усиления η зависит от геометрии взаимодействия НЖК и светового пучка. Так, например, в НЖК с добавками низкомолекулярных азокрасителей проявляется знакопеременная оптическая нелинейность (при увеличении угла Ψ между падающим световым полем и директором фактор усиления η уменьшается, переходя от положительных значений к отрицательным) [4].

В последнее время особый интерес представляют различные высокомолекулярные поглощающие добавки: гребнеобразные полимеры различной архитектуры [5–7], дендримеры [7–11], комплексы с водородными связями [12–14], POSS-наночастицы (polyhedral oligomeric silsesquioxane nanoparticles) [15]. Для таких систем было обнаружено значительное увеличение нелинейнооптического отклика в сравнении с мономерами (при одинаковой концентрации хромофоров в объеме НЖК).

Нелинейно-оптический отклик НЖК с примесью дендримеров и полимеров возрастает при увеличении молекулярного веса поглощающей добавки. При этом меняется знак нелинейности. Так, для мономера и дендримера первой генерации наблюдалась знакопеременная нелинейность НЖК [8]. Для дендримеров второй–пятой генераций с увеличением молекулярной массы нелинейность и, соответственно, фактор усиления η оставались отрицательными и возрастали по модулю, при этом зависимость η от угла Ψ ослаблялась [8, 10]. Аналогичное поведение наблюдалось для НЖК с добавками гребнеобразных полимеров различной степени полимеризации [6].

Поясним, следуя [16, 17], связь фотоизомеризации азодобавок и свойств ориентационной нелинейности. При поглощении светового кванта азомолекула переходит в возбужденное состояние, а затем релаксирует с вероятностью Φ_{tr} в транс- и с вероятностью Φ_{cis} ($\Phi_{cis} = 1 - \Phi_{tr}$) в цис-состояние. Таким образом, транс-изомер (соответствует основной конфигурации молекулы) после возбуждения световым квантом может перейти в цис-состояние. Цис-изомер может перейти в транс-состояние под действием света или в результате тепловой релаксици.

Цис-изомеры индуцируют положительную нелинейность, в то время как транс-изомеры - отрицательную. Поэтому нелинейно-оптический отклик НЖК зависит от концентраций цис- и транс-изомеров азобензольных фрагментов в световом поле. Фактор усиления может быть выражен через относительные концентрации транс- $X_{tr} = N_{tr} / N_0$ и цис-изомеров $X_{cis} = N_{cis} / N_0$ (N_{tr}, N_{cis}, N_0 – концентрации транс-, цис- изомеров и их суммарная концентрация) и факторы усиления η_{tr} и η_{cis} для случаев, когда все азохромофоры находятся в транс- или циссостоянии

$$\eta = \eta_{tr} X_{tr} + \eta_{cis} X_{cis} \,. \tag{1}$$

Транс-изомер имеет палочкообразную форму, поэтому в большей степени, чем цис-изомер, ориентируется вдоль директора. Как следствие, вероятность поглощения транс-изомером светового кванта сильнее зависит от угла Ψ между световым полем и директором. Различие этих зависимостей объясняет изменение соотношения концентраций изомеров и, соответственно, фактора усиления от угла Ψ .

Увеличение нелинейности НЖК при переходе от низкомолекулярных к высокомолекулярным примесям может происходить как за счет изменения отно-

сительных концентраций изомеров, так и за счет изменения параметров η_{tr} и η_{cis} . Вдали от точки фазового перехода НЖК в изотропное состояние эффекты, связанные с изменением параметра порядка нематической матрицы при фотоизомеризации азодобавки, незначительны и не должны оказывать существенного влияния на нелинейность НЖК, так как концентрация азодобавок мала ~ 10⁻⁴.

Целью данной работы является установление причин различия нелинейнооптического отклика, индуцированного низко- и высокомолекулярными поглощающими добавками в нематической матрице. Для этого проведено сравнительное исследование фотоизомеризационных свойств азобензольных добавок в нематической матрице, ориентационного нелинейнооптического отклика НЖК и вклада каждого из изомеров в ориентационную нелинейность.

Статья построена следующим образом: в первом разделе описаны методики измерения концентраций и факторов усиления изомеров; во втором разделе описаны процедуры и представлены результаты измерения конформационного состава азобензольного мономера и азобензольных хромофоров дендримера; в третьем разделе приведены результаты измерения факторов усиления, относящихся к каждому из изомеров исследуемых соединений.

1. МЕТОДИКИ ИЗМЕРЕНИЯ РАВНОВЕСНЫХ КОНЦЕНТРАЦИЙ ИЗОМЕРОВ В СВЕТОВОМ ПОЛЕ И ФАКТОРОВ УСИЛЕНИЯ

Для определения концентраций изомеров в нематической матрице воспользуемся их связью с коэффициентом поглощения *а*

$$\alpha = \alpha_{tr} X_{tr} + \alpha_{cis} X_{cis}, \qquad (2)$$

где α_{tr} и α_{cis} - коэффициенты поглощения транс- и цис-изомеров. Спектр трансизомера совпадает со спектром азосоединения в НЖК, записанным до облучения, так как молекулы красителя находятся в транс-состоянии. Для нахождения спектра поглощения цис-изомера использовали метод, аналогичный [16]. Образец последовательно облучается при нормальном падении световым пучком накачки обыкновенной и необыкновенной поляризаций (рис. 1а). Для каждой поляризации *i* пучка накачки (необыкновенной, *i* = e, или обыкновенной, *i* = o) измеряется коэффициент поглощения α_i^j необыкновенной (*j* = e) и обыкновенной (*j* = o) волн с помощью пробного светового пучка. Коэффициенты поглощения изомеров азосоединения в световом поле α_i^j связаны с концентрациями цисизомеров X_{cis}^i в поле накачки четырьмя соотношениями

$$\alpha_i^j = \alpha_{tr}^j \left(1 - X_{cis}^i \right) + \alpha_{cis}^j X_{cis}^i.$$
(3)

Рис. 1. Нормальное падение света на планарно ориентированный НЖК: Е поле падающего на НЖК светового пучка, \mathbf{E}_{e} – поле необыкновенной волны, \mathbf{E}_{o} – поле обыкновенной волны, \mathbf{k} – волновой вектор, \mathbf{n} – директор НЖК, φ - угол поворота плоскости поляризации падающей световой волны относительно директора \mathbf{n} (оси X).

Только три уравнения системы (3) являются независимыми, поэтому было использовано дополнительное уравнение для стационарных концентраций изомеров, следующее из уравнения динамики фотоизомеризации,

$$\frac{\boldsymbol{\Phi}_{tr}\boldsymbol{\alpha}_{tr}^{k}}{\boldsymbol{\Phi}_{cis}\boldsymbol{\alpha}_{cis}^{k}} = \frac{X_{cis}^{k}}{\left(1 - X_{cis}^{k}\right)},\tag{4}$$

где k = e, о. Соотношение (4) выполняется при достаточно большой интенсивности пучка накачки ($I >> \hbar c N_0 / \lambda \alpha_{cis} \tau_{cis}$, где, c – скорость света, τ_{cis} – время тепловой релаксации цис-изомера) и соответствует состоянию насыщения, при котором стационарные концентрации изомеров не зависят от интенсивности. Как следует из (3) и (4), коэффициенты поглощения цис-изомера в нематической матрице равны

$$\alpha_{cis}^{e} = \frac{\alpha_{tr}^{e} \alpha_{e}^{e} A}{\alpha_{tr}^{e} (A+1) - \alpha_{e}^{e}},$$
(5)

$$\alpha_{cis}^{o} = \frac{\alpha_{tr}^{o} \alpha_{o}^{o} A}{\alpha_{tr}^{o} (A+1) - \alpha_{o}^{o}},$$
(6)

где A является отношением квантовых выходов \varPhi_{cis} / \varPhi_{tr} , равным

$$A = \frac{\alpha_{tr}^{e} - \alpha_{e}^{e}}{\alpha_{e}^{e} - \alpha_{o}^{e}} \left(\frac{\alpha_{o}^{e}}{\alpha_{tr}^{e}} - \frac{\alpha_{o}^{o}}{\alpha_{tr}^{o}} \right), \tag{7}$$

Коэффициенты поглощения в (5)–(7) должны соответствовать длине волны накачки. Вычислив коэффициенты поглощения цис-изомера, доли изомеров найдем из (3)

$$X_{cis}^{i} = \frac{\alpha_{trans}^{e} - \alpha_{i}^{e}}{\alpha_{trans}^{e} - \alpha_{cis}^{e}}.$$
(8)

Заметим, что в отличие от предыдущих формул для вычисления α_{cis}^{j} , соотношение (8) выполняется для произвольной длины волны.

Определение α_{cis}^{j} в видимой области спектра, в которой проводились эксперименты по оптической ориентации НЖК, затруднено малостью величин α_{tr}^{j} и α_{i}^{j} . Для преодоления этой трудности, из (5)–(7) определим значения X_{cis}^{e} при облучении УФ накачкой с длиной волны λ_{1} , близкой к максимуму поглощения транс-изомера. Далее, по измерениям коэффициентов поглощения $\alpha_{i}^{e}(\lambda_{1})$ при облучении пучком накачки с длиной волны λ_{2} видимого диапазона, с помощью (8), получим доли изомеров $X_{cis}^{i}(\lambda_{2})$.

Такой подход позволяет восстановить весь спектр цис-изомера

$$\alpha_{cis}^{j}(\lambda) = \frac{\alpha_{i}^{j}(\lambda) - \alpha_{trans}^{j}(\lambda) \left(1 - X_{cis}^{e}(\lambda_{1})\right)}{X_{cis}^{e}(\lambda_{1})}.$$
(9)

Отметим, что соотношение (8) позволяет определить зависимость концентрации изомеров от угла Ψ между падающим световым полем и директором НЖК. Это соотношение также справедливо для любой поляризации накачки и наклонного падения света, где угол Ψ определяется формулой

$$\cos\Psi = \cos\beta\cos\varphi, \qquad (10)$$

где β - угол преломления. В случае нормального падения угол Ψ равен углу поворота плоскости поляризации *φ*.

Соотношение изомеров не зависит от изменения поляризации при распространении света в анизотропной среде и определяется углом Ψ [11, 17]. Так, например, освещение НЖК необыкновенной волной, проходящей под углом β , приводит к тому же соотношению изомеров, что и нормальное падение света, плоскость поляризации которого повернута на угол β .

Перейдем к методике определения факторов усиления η_{v} и η_{cis} , связанных с отдельными изомерами. Из соотношения (1) следует, что для этого достаточно измерить факторы усиления вращающего момента η и относительные концентрации изомеров при двух различных геометриях взаимодействия между световым полем и директором НЖК. Фактор усиления η можно найти, измерив интенсивности светового пучка, приводящие к одному и тому же малому изменению показателя преломления для НЖК с добавками М и G5, а также для нелегированного НЖК. Отношение интенсивности для НЖК с азодобавкой к интенсивности для нелегированного НЖК даст фактор усиления η_1 и η_2 и доли цис-изомеров $X_{cis}^{(1)}$ и $X_{cis}^{(2)}$ для двух геометрий взаимодействия светового поля с НЖК, получим факторы усиления, обусловленные отдельными изомерами

$$\eta_{trans} = \frac{\eta_1 X_{cis}^{(2)} - \eta_2 X_{cis}^{(1)}}{X_{cis}^{(2)} - X_{cis}^{(1)}},\tag{11}$$

8

$$\eta_{cis} = \frac{\eta_2 (1 - X_{cis}^{(1)}) - \eta_1 (1 - X_{cis}^{(2)})}{X_{cis}^{(2)} - X_{cis}^{(1)}}.$$
(12)

2. СПЕКТРАЛЬНОЕ ИССЛЕДОВАНИЕ ФОТОИЗОМЕРИЗАЦИИ АЗОДОБАВОК В НЕМАТИЧЕСКОЙ МАТРИЦЕ

2.1 Экспериментальная установка и образцы

Использовалась нематическая матрица MLC-6816 (Merck) (температура перехода в изотропную фазу 76.5° С), прозрачная в УФ и видимом диапазоне. НЖК легировались добавками низкомолекулярного красителя (мономера) М и карбосиланового гомодендримера G5 (рис. 2). Терминальные азобензольные фрагменты дендримера аналогичны по строению молекулам мономера. Концентрация поглощающих добавок составляла 0.075% по массе.

Были изготовлены жидкокристаллические ячейки толщиной L = 100 мкм с кварцевыми подложками. Внутренние поверхности подложек были покрыты слоем полиимида и натерты для достижения планарной ориентации НЖК. Исследование проводилось при комнатной температуре.

Для изучения фотоизомеризации азосоединений в нематической матрице использовались два источника света: светодиод с длиной волны в максимуме излучения $\lambda_1 = 365$ нм (ширина линии ~ 10 нм), которая близка к максимуму поглощения транс- изомера, и твердотельный непрерывный лазер LCS-DTL-364 (Laser Export, Россия) с длиной волны $\lambda_2 = 473$ нм и линейной поляризацией излучения (рис. 3). В случае светодиода световой пучок проходил через поляризационную призму, рассеивающую линзу и падал на образец. При использовании твердотельного лазера плоскость поляризации поворачивалась с помощью двойного ромба Френеля.

Рис. 2. Химические формулы (а) мономера М и (б) дендримера пятой генерации G5. Ме – метиловая группа.

Рис. 3. Схема эксперимента по определению концентраций изомеров: *1* – светодиод (365 нм) или лазер (473 нм), *2* – поляризационная призма или двойной ромб Френеля, *3* – рассеивающая линза, *4* – НЖК.

2.2 Определение спектров поглощения цис-изомеров

Время релаксации цис-изомеров было достаточно большим (~ 10 часов). Это позволяло получить поляризационные спектры, соответствующие состоянию насыщения фотоизомеризации, в течение нескольких минут после облучения. Для записи спектров использовался спектрофотометр MC-122 (Proscan Special Instruments, Belarus).

Спектры поглощения необлученных образцов, соответствующие спектрам транс-изомеров, приведены на рисунках 4а и 5а. Коэффициенты поглощения на длине волны 365 нм для необыкновенной и обыкновенной волн составляют $\alpha_{trans}^{e}(M) = 337 \text{ см}^{-1}$, $\alpha_{trans}^{o}(M) = 60 \text{ см}^{-1}$ и $\alpha_{trans}^{e}(G5) = 276 \text{ см}^{-1}$, $\alpha_{trans}^{o}(G5) = 70 \text{ см}^{-1}$. Погрешность измерения коэффициента поглощения не превышала 3 см⁻¹. Параметры порядка транс-изомеров, определенные с помощью соотношения $S_{trans} = (\alpha_{trans}^{e} - \alpha_{trans}^{o}) / (\alpha_{trans}^{e} + 2\alpha_{trans}^{o})$, равны 0.61 и 0.50 для М и G5, соответственно. Таким образом, включение хромофора в структуру дендримера приводит к уменьшению его ориентационной упорядоченности в нематической матрице.

Рис. 4. Спектры поглощения НЖК MLC-6816 с добавкой мономера M (а) до облучения и (б) после облучения светом ($\lambda = 365$ нм) (1, 2) обыкновенной и (3, 4) необыкновенной поляризаций. Линии 1, 3 соответствуют поглощению необыкновенной волны, 2, 4 - поглощению обыкновенной волны. На вставке приведены спектры поглощения (1) необыкновенной и (2) обыкновенной волн для цис-изомера, восстановленные с помощью соотношения (9).

Спектры, полученные после облучения образцов УФ излучением, соответствовали насыщению фотоизомеризации, т.е. при увеличении интенсивности и времени облучения дальнейшее изменение поглощения не происходило. Состояние насыщения достигалось при плотности мощности $I \sim 0.3$ мВт/см² и времени облучения $t \sim 5$ мин.

Спектры поглощения НЖК с добавкой мономера М после облучения светодиодом представлены на рис. 4б. Подставив коэффициенты поглощения на длине волны $\lambda = 365$ нм в (5)-(7), получим коэффициенты поглощения цисизомера $\alpha_{cis}^{e}(M) = 22$ см⁻¹, $\alpha_{cis}^{o}(M) = 16$ см⁻¹ и отношение квантовых выходов A = 1.85. Учитывая очевидное соотношение $\Phi_{tr} + \Phi_{cis} = 1$, находим квантовые выходы $\Phi_{cis} = 0.65$, $\Phi_{tr} = 0.35$. Согласно (8), доли цис-изомеров в поле необыкновенной и обыкновенной волн равны $X_{cis}^{e} = 0.97$ и $X_{cis}^{o} = 0.88$. Далее, используя (9), получим спектр цис-изомера (рис. 4а, вставка).

Рис. 5. Спектры поглощения для НЖК MLC-6816 с добавкой дендримера G5 (а) до облучения и (б) после облучения светом ($\lambda = 365$ нм) (1, 2) обыкновенной и (3, 4) необыкновенной поляризаций. Линии 1, 3 соответствуют поглощению необыкновенной волны, 2, 4 - поглощению обыкновенной волны.

Спектр поглощения НЖК с добавкой G5 после облучения фотодиодом практически не зависел от поляризации накачки (рис. 4б, кривые 1, 2 и кривые 3, 4). Исчезало также различие между коэффициентами поглощения обыкновенной (кривые 2, 4) и необыкновенной (кривые 1, 3) волн; небольшое различие наблю-12 далось только в диапазоне 330-350 нм. Так как транс-изомер обладает существенным дихроизмом, совпадение спектров поглощения обыкновенной и необыкновенной волн свидетельствовало о том, что молекулы почти полностью перешли в цис-форму. Таким образом, полученные спектры с точностью до ошибки измерения соответствуют спектру цис-изомера. Этот вывод следует также из (5)–(7) в предельном переходе при $\alpha_e^e \rightarrow \alpha_o^e$. Из рис. 56 получены значения α_{cis}^e (G5) = α_{cis}^o (G5) ≈ 30 см⁻¹ на длине волны $\lambda = 365$ нм.

2.3 Концентрации цис-изомеров в световом поле (473 нм)

Перейдем к определению зависимости относительных концентраций изомеров от угла Ψ между падающим световым полем и директором НЖК при возбуждении поглощающих молекул светом с длиной волны $\lambda = 473$ нм. Спектры поглощения были получены при времени экспозиции $t \sim 10$ мин и интенсивности I = 1.3 мВт/см². В этих условиях достигалось насыщение концентраций изомеров.

Рис. 6. Спектры поглощения необыкновенной волны для НЖК MLC-6816 с добавкой (а) мономера М и (б) дендримера G5 до и после облучения световым пучком ($\lambda = 473$ нм) при изменении угла φ между электрическим полем падающей световой волны и директором НЖК с шагом в 10° ($\varphi = 0^\circ$ соответствует облучению НЖК необыкновенной световой волной, $\varphi = 90^\circ$ - облучению НЖК обыкновенной световой волной).

Были записаны спектры поглощения НЖК в диапазоне $0^{\circ} \le \varphi \le 90^{\circ}$ (рис. 6). При переходе от обыкновенной к необыкновенной волне накачки происходит монотонное уменьшение максимума поглощения. Подставляя в (8) коэффициенты поглощения цис- и транс-изомеров на длине волны 365 нм, а также коэффициенты поглощения на этой длине волны после облучения пучком накачки (473 нм), определим зависимость доли цис-изомеров от угла Ψ между световым полем и директором (рис. 7), который в данном случае совпадает с углом φ . Для каждого из образцов при повороте плоскости поляризации светового пучка, т.е. увеличении угла φ , происходит уменьшение доли цис-изомеров. Наблюдаемые расхождения концентраций цис-изомеров мономера М и дендримера G5 сравнимы с ошибкой измерения.

Рис. 7. Относительные концентрации цис-изомеров (1) мономера М и (2) дендримера G5 в нематической матрице MLC-6816 при облучении световым пучком ($\lambda = 473$ нм), плоскость поляризации которого составляет угол Ψ с невозмущенным директором.

Таким образом, существенных различий фотоизомеризации мономера М и дендримера G5 в нематической матрице не наблюдается.

3. НЕЛИНЕЙНО-ОПТИЧЕСКИЙ ОТКЛИК НЖК

3.1. Ориентационная нелинейность НЖК с добавками мономера и дендримера

Исследовались планарные и гомеотропные НЖК MLC-6816 с добавками M и G5 (0.075% по весу). Толщина ячеек составляла L = 100 мкм. Для изготовления планарных образцов использовался натертый слой полиимида, нанесенный на стеклянные подложки; для изготовления гомеотропных образцов – слой стеарилхлорида хрома.

Рис. 8. Экспериментальная установка для исследования оринтационной нелинейности НЖК: *1* – твердотельный лазер, *2* – двойной ромб Френеля *3* – собирающая линза, *4* – НЖК, *5* - анализатор, *6* – экран.

Световой пучок от лазера (1) с длиной волны $\lambda = 473$ нм фокусировался линзой (3) на вертикально расположенную жидкокристаллическую ячейку (4) (FWHM = 50 мкм) (рис. 8). Плоскость поляризации светового пучка могла поворачиваться с помощью двойного ромба Френеля (2). Угол падения света на образец составлял $\alpha = 50^{\circ}$. За образцом были установлены анализатор (5) и экран (6).

Для изучения нелинейно-оптического отклика использовался метод аберрационного самовоздействия света [18]. Искажение волнового фронта светового пучка, проходящего через деформированный НЖК, приводило к формированию аберрационной картины в виде системы концентрических колец, наблюдавшейся на экране. По числу аберрационных колец *N* можно определить среднее по толщине абсолютное значение изменения показателя преломления

$$\left|\Delta n\right| = N\lambda\cos\beta / L \,. \tag{13}$$

Знак светоиндуцированного показателя преломления Δn определялся по трансформации аберрационной картины при быстром сдвиге жидкокристаллической ячейки перпендикулярно световому пучку [7, 18]. Положительные значения Δn соответствуют повороту директора к световому полю необыкновенной волны, отрицательные – от светового поля.

Рис. 9. Зависимости светоиндуцированного показателя преломления Δn от интенсивности *I* наклонно падающего ($\alpha = 50^{\circ}$) светового пучка ($\lambda = 473$ нм) для НЖК MLC-6816 с добавкой (а) мономера М и (б) дендримера G5: (*1*) планарная и (*2*) гомеотропная ориентации.

При падении светового пучка горизонтальной поляризации на исследуемые образцы на экране формировалась аберрационная картина. Времена установления и релаксации аберрационной картины (~ 10 с) были характерны для ориентационной нелинейности НЖК. Зависимости светоиндуцированного показателя преломления Δn для исследуемых образцов от интенсивности света *I* на оси пучка представлены на рис. 9. Для планарного НЖК с добавкой мономера М значение Δn было положительным (рис. 9а, кривая *I*), в то время как для гомеотропного – отрицательным (кривая *2*). Значение Δn для планарного и гомеотропного НЖК с добавкой G5, независимо от угла падения светового пучка, было отрицательным (рис. 9б). Коэффициент нелинейности $n_2 = \Delta n/I$ для НЖК с добавкой дендримера на порядок превышает соответствующую величину для НЖК с добавкой мономера. Так, значения n_2 , определенные для планарных НЖК с добавками М и G5 при $\Delta n = 0.1$, равны 0.7 и -13 см²/кВт, соответственно.

Черты переориентации директора в НЖК с добавками мономера М и дендримера G5 (увеличение ориентационного отклика и смена знакопеременной нелинейности на отрицательную) являются типичными для ориентационной нелинейности, индуцированной низко- и высокомолекулярными азобензольными соединениями [5, 7, 13].

3.2. Факторы усиления нелинейности, обусловленные изомерами.

Было проведено сравнение ориентационного действия света на НЖК с поглощающими добавками и на нелегированный НЖК MLC-6816 (L = 100 мкм) планарной ориентации. Для этого измерялись интенсивности на оси падающего светового пучка, приводящие к одному и тому же небольшому нелинейному набегу фазы S_{nl} необыкновенной волны. Отношение интенсивностей для нелегированного и легированного образцов определяет фактор усиления вращающего момента при соответствующем угле Ψ между световым полем и директором. Измерив факторы усиления при двух различных значениях угла φ поворота плоскости поляризации, согласно (10)–(12) можно определить факторы усиления, связанные с транс- и цис-изомерами.

Светоиндуцированный поворот директора регистрировался по изменению интенсивности света, прошедшего через НЖК и анализатор. Интенсивность света после анализатора определяется выражением

$$I = I_0 \left[\cos^2(\gamma - \varphi) - \sin 2\varphi \sin 2\gamma \sin^2\left(\frac{S_0 + S_{nl}}{2}\right) \right], \tag{14}$$

где I_0 – интенсивность падающего на НЖК светового пучка, γ - угол между направлением пропускания анализатора и горизонтальной плоскостью, S_0 – набег фазы между необыкновенной и обыкновенной волнами в недеформированном НЖК. Из (14) видно, что при повороте директора, т.е. изменении S_{nl} , интенсивность после анализатора будет осциллировать.

Изменение интенсивности света после анализатора регистрировалось с помощью CCD-камеры, установленной перед экраном. Направление пропускания анализатора выбиралось так, чтобы обеспечить максимальную глубину модуляции интенсивности ($\gamma \approx \varphi + \pi/2$). Угол падения α подстраивался на несколько градусов, чтобы обеспечить максимальное начальное значение интенсивности, которое достигается при условии $\sin^2(S_0/2) = 1$. Далее определялась интенсивность света, при которой величина S_{nl} достигала величины π , то есть интенсивность после анализатора изменялась с максимального до минимального значения.

Таблица 1. Интенсивности светового пучка, приводящие к дополнительному набегу фазы $S_{nl} = \pi$ необыкновенной волны, и знаки нелинейности при наклонном падении ($\alpha = 50^{\circ}$) светового пучка при двух углах поворота плоскости поляризации 0° и 60°.

Образец	Интенсивность светового пучка и	
	знак нелинейности при различных	
	углах φ	
	0°	60°
НЖК MLC-6816	380 Bт/см ²	1500 Bт/см ²
	(положительная	(положительная
	нелинейность)	нелинейность)
НЖК MLC-6816 с добавкой мономера М	17 BT/cm^2	190 Bт/см ²
	(положительная	(отрицательная
	нелинейность)	нелинейность)
НЖК MLC-6816 с добавкой дендримера G5	$0.26 \mathrm{Bt/cm}^2$	$5.5 \mathrm{Br/cm}^2$
	(отрицательная	(отрицательная
	нелинейность)	нелинейность)

Измерения проводились при углах поворота плоскости поляризации $\varphi \approx 0^{\circ}$ и $\varphi = 60^{\circ}$. В первом случае поляризация света слегка отстраивалась от горизонтали, обеспечивая добавление пробного светового пучка вертикальной поляризации. Соответствующие интенсивности и знак нелинейности для нелегирован-

ного НЖК и для НЖК с добавками М и G5, приведены в таблице 1. Значение интенсивности при $\varphi = 60^{\circ}$ для нелегированного НЖК рассчитывалось из значения, измеренного при $\varphi = 0^{\circ}$, с учетом того, что обыкновенная волна не взаимодействует с образцом.

Используя полученные интенсивности, а также значения относительных концентраций цис-изомеров при соответствующих углах Ψ (рис. 7), согласно (10)–(12), получим значения для факторов усиления вращающего момента, обусловленных изомерами: $\eta_{tr} \approx -1 \cdot 10^2$ и $-5 \cdot 10^2$, $\eta_{cis} \approx 4 \cdot 10^2$ и $9 \cdot 10^2$ для М и G5. Таким образом, при переходе от мономера к полимеру, возрастают абсолютные значения факторов усиления, связанных как с транс-, так и с цис-изомерами; при этом $|\eta_{tr}|$ возрастает сильнее, чем $|\eta_{cis}|$.

Согласно теоретическим моделям [19–21], фактор усиления нелинейности изомеров должен зависеть от коэффициентов вращательной диффузии хромофоров D_r . Уменьшение коэффициента вращательной диффузии приводит к увеличению нелинейно-оптического отклика. В работе [22] было показано, что коэффициент вращательной диффузии молекул НЖК существенно зависит от длины мезогена. В [23, 24] показано, что коэффициент вращательной диффузии бокового фрагмента гребнеобразного полимера, образующего нематическую фазу, значительно уменьшается с увеличением степени полимеризации. Так, для полимера со степенью полимеризации p = 100 величина D_r на 3 порядка меньше, чем для соответствующего мономера. Поэтому можно предположить, что наблюдаемое увеличение нелинейнооптического отклика для НЖК с добавкой дендримера G5 по сравнению с НЖК, легированным мономером М, обусловлено уменьшением коэффициента вращательной диффузии хромофоров.

Переход от знакопеременной к отрицательной нелинейности обусловлен бо́льшим возрастанием фактора усиления для транс-изомера. Это возрастание, в свою очередь, может быть связано с различным изменением ориентации цис- и транс-изомеров при конформационных переходах для хромофоров мономера и высокомолекулярного соединения.

ЗАКЛЮЧЕНИЕ

Проведено сравнительное исследование фотоизомеризации низко- и высокомолекулярных азобензольных добавок в нематической матрице и их влияния на ориентационную оптическую нелинейность НЖК.

Исследованы НЖК с добавками мономера и дендримера пятой генерации с терминальными фрагментами, аналогичными мономеру. Определены доли изомеров при возбуждении азодобавок лазерным пучком в нематической матрице. Существенных различий в равновесных концентрациях изомеров мономера и дендримера выявлено не было.

Коэффициент нелинейности НЖК с добавкой дендримера существенно превышает по модулю соответствующее значение для НЖК с добавкой мономера, а также отличается по знаку (для планарных образцов). Установлено, что факторы усиления нелинейности при переходе от мономера к дендримеру существенно возрастают как для транс-изомеров, так и цис-изомеров. При этом коэффициент усиления для транс-изомера возрастает сильнее, что соответствует переходу от знакопеременной к отрицательной нелинейности НЖК.

Причины в различии светоиндуцированной нелинейности НЖК связаны, по-видимому, со значительным увеличением времени вращательной диффузии азофрагментов при переходе от мономера к высокомолекулярному соединению.

Авторы благодарны А.Ю. Бобровскому, В.Н. Очкину и В.П. Шибаеву за полезные обсуждения. Работа выполнена при поддержке РФФИ (проект № 14-02-00791).

ЛИТЕРАТУРА

- 1. Jánossy, I.; Csillag, L.; Lloyd A.D. Phys. Rev. A 1991, 44, 8410-8413.
- 2. Jánossy, I.; Kósa, T. Opt. Lett. 1992, 17, 1183-1185.
- 3. Marrucci, L.; Paparo, D.; Maddalena, P.; Massera, E.; Prudnikova, E.; Santamato, E. J. Chem. Phys. 1997, 107, 9783-9793.
- Barnik, M.I.; Zolot'ko, A.S.; Rumyantsev, V.G.; Terskov, D.B. *Crystallogr. Rep.* 1995, 40, 691–694.

- 5. Budagovsky, I.A.; Zolot'ko, A.S.; Ochkin, V.N.; Smayev, M.P.; Bobrovsky, A.Y.; Shibaev, V.P.; Barnik, M.I. J. Exp. Theor. Phys. 2008, 106, 172–181.
- Budagovsky, I.A.; Pavlov, D.S.; Shvetsov, S.A.; Smayev, M.P.; Zolot'ko, A.S.; Boiko, N.I.; Barnik, M.I. *Mol. Cryst. Liq. Cryst.* 2012, 561, 89-96.
- Zolot'ko, A.S.; Budagovsky, I.A.; Ochkin, V.N.; Smayev, M.P.; Bobrovsky, A.Y.; Shibaev, V.P.; Boiko, N.I.; Lysachkov, A.I.; Barnik, M.I. *Mol. Cryst. Liq. Cryst.* 2008, 488, 265–278.
- Budagovsky, I.A.; Ochkin, V.N.; Smayev, M.P; Zolot'ko, A.S.; Bobrovsky, A.Y.; Boiko, N.I.; Lysachkov, A.I.; Shibaev, V.P.; Barnik, M.I. *Liq. Cryst.* 2009, 36, 101-107.
- Babayan, E.A.; Budagovsky, I.A.; Shvetsov, S.A.; Smayev, M.P.; Zolot'ko, A.S.; Boiko, N.I.; Barnik, M.I. *Phys. Rev. E* 2010, 82, 061705.
- Budagovsky, I.A.; Ochkin, V.N.; Shvetsov, S.A.; Smayev, M.P.; Zolot'ko, A.S.; Brazhnikov, D.A.; Boiko, N.I.; Barnik, M.I. *Mol. Cryst. Liq. Cryst.* 2011, 544, 112-118.
- 11.Zolot'ko, A.S.; Smaev, M.P.; Shvetsov, S.A.; Boiko, N.I.; Barnik, M.I. *Quantum Electronics* **2012**, 42, 327-331.
- 12. Ouskova, E.; Kaivola, M. Opt. Mater. Express 2012, 2, 1056-1063.
- 13.Uklein, A.V.; Vasko, A.A.; Ouskova, E.V.; Brodyn, M.S.; Gayvoronsky, V.Ya. Opt. Commun. 2013, 296, 79-83.
- 14. Ouskova, E.; Pshenychnyi, A; Sánchez-Ferrer, A; Lysenko, D; Vapaavuori, J; Kaivola, M. J. Opt. Soc. Am. B 2014, 31, 1456-1464.
- 15.Miniewicz, A.; Girones, J.; Karpinski, P.; Mossety-Leszczak, B.; Galina, H.; Dutkiewicz, M. J. Mater. Chem. C 2014, 2,432-440.
- 16. Jánossy, I.; Szabados, L. J. Nonlinear Opt. Phys. Mater. 1998, 7, 539-551.
- 17. Jánossy, I.; Szabados, L. Phys. Rev. E 1998, 58, 4598-4604.
- 18. Kitaeva, V.F.; Zolot'ko, A.S.; Barnik, M.I. Mol. Materials 2000, 12, 271-293.
- 19. Jánossy, I. Phys. Rev. E 1994, 49, 2957-2963.
- 20. Marrucci, L.; Paparo, D. Phys. Rev. E 1997, 56, 1765-1772.
- 21.Zolot'ko, A.S. JETP Lett. 1998, 68, 437-441.

- 22.Rjumtsev, E.I.; Kowshik, A.P.; Saburov, B.S.; Umursokov, R.M. Mol. Cryst. Liq. Cryst. 1997, 303, 331-339.
- 23. Seiberle, H.; Stille, W.; and Strobl, G. Macromolecules 1990, 23, 2008-2016.
- 24.Götz, S.; Stille, W.; and Strobl, G. Macromolecules 1993, 26, 1520-1528.

Иван Андреевич Будаговский Александр Степанович Золотько Михаил Петрович Смаев Сергей Александрович Швецов Наталья Ивановна Бойко

Фотоизомеризация низко- и высокомолекулярных поглощающих соединений в нематической матрице и их влияние на ориентационную нелинейность

Формат 60х84/16. Бумага офсетная. Печать офсетная. Тираж 140 экз. Заказ №61. П.л.1,5 Отпечатано с оригинал-макета заказчика в типографии РИИС ФИАН 119991 Москва, Ленинский проспект 53