

ISSN 2410-4914

7

С. Д. ЗОТОВ, А.А. КУЗНЕЦОВ, А.А. ЛЕБЕДЕВ

О ДИНАМИКЕ ПОЯВЛЕНИЯ АКУСТИЧЕСКИХ СОБЫТИЙ ПРИ ОБЛУЧЕНИИ СТЕКЛЯННОГО ОБРАЗЦА ИМПУЛЬСОМ СО₂ ЛАЗЕРА

Москва — 2015

Препринты ФИАН им. П. Н. Лебедева

ISSN 2410-4914

Главный редактор В.И.Ритус, *зам. главного редактора* А.А.Гиппиус, *научный секретарь* С.А.Богачев, *ответственный секретарь* Л.В.Селезнев

Редакционная коллегия: В.С.Бескин, А.А.Горбацевич, О.Д.Далькаров, Е.И. Демихов, И.Г.Зубарев, К.П.Зыбин, А.А.Ионин, Н.Н.Колачевский, Е.Р.Корешева, С.Ф.Лихачев, А.С.Насибов, И.Д.Новиков, В.Н.Очкин, Н.Г.Полухина, В.С.Лебедев, Н.Н.Сибельдин, Д.Р.Хохлов, С.А.Чайковский

Информация

Препринты ФИАН им. П. Н. Лебедева издаются с 1964 г.

Издатель: Федеральное государственное бюджетное учреждение науки Физический институт им. П. Н. Лебедева Российской академии наук (ФИАН)

Адрес редакции: Россия, 119991 Москва, Ленинский просп., 53, ФИАН Тел.: +7 (499) 132-6137, +7 (499) 783-3640; E-mail: *preprins@sci.lebedev.ru, irinakh@sci.lebedev.ru*

Страница сборника «Препринты ФИАН им. П. Н. Лебедева» в интернете: *http://preprints.lebedev.ru/*

© Физический институт им. П. Н. Лебедева РАН, 2015

РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ ИМ. П.Н. ЛЕБЕДЕВА

С.Д.Зотов, А.А.Кузнецов, А.А.Лебедев

О ДИНАМИКЕ ПОЯВЛЕНИЯ АКУСТИЧЕСКИХ СОБЫТИЙ ПРИ ОБЛУЧЕНИИ СТЕКЛЯННОГО ОБРАЗЦА ИМПУЛЬСОМ СО₂ ЛАЗЕРА

<u>№</u> 7

Москва 2015

Аннотация

С.Д.Зотов, А.А.Кузнецов, А.А.Лебедев.

О динамике появления акустических событий при облучении стеклянного образца импульсом CO₂ лазера.

Изучены результаты измерений акустической эмиссии в стекле при его облучении инфракрасным лазерным импульсом. Показано, что в рассматриваемых условиях во время лазерного воздействия на образец устанавливается автоколебательный режим, при котором температура поверхности и скорость испарения вещества носят самосогласованный пульсирующий характер. Возникающие при этом в образце волны давления и термомеханические напряжения, приводят к аннигиляции имеющихся дислокаций, сопровождающейся акустическими импульсами с широкополосным спектром и энергией ~ 10⁻¹⁸ Дж.

Рассчитанный период генерации волн давления согласуется со средним расстоянием между акустическими импульсами и составляет ~ 12 мсек.

Проведены оценки распределения температуры в образце после окончания лазерного воздействия. Установлено, что при переходе расплавленной части вещества в твердую фазу образуются микротрещины, приводящие к возникновению мощных (~ 10⁻¹² Дж) акустических импульсов.

О динамике появления акустических событий при облучении стеклянного образца импульсом CO₂ лазера.

С.Д.Зотов, А.А.Кузнецов, А.А.Лебедев.

Физический институт им.П.Н.Лебедева Российской Академии Наук, 119991 г. Москва, Ленинский просп., д. 53, e-mail: smith@sci.lebedev.ru

1. Введение

Исследование акустической эмиссии (АЭ), возникающей в жидкостях и твердых телах в результате различных воздействий, может быть использовано для обнаружения и изучения протекающих при этом процессов [1-5]. В частности, такая попытка была предпринята в работе [6], где приведена интерпретация экспериментальных данных по АЭ в стеклянных образцах при облучении их инфракрасным лазерным импульсом. Интерпретация проводилась в предположении справедливости приведенной там же следующей гипотезы. Возбужденная лазерным импульсом уединённая упругая волна, распространяясь в образце, благодаря градиенту плотности на переднем фронте, перемещает различные дефекты и выносит их на поверхность. На поверхности дефекты рекомбинируют, образуя импульсы акустической эмиссии, которые распространяются по поверхности образца и фиксируются регистрирующей аппаратурой. В [7] было показано, что представленная в [6] интерпретация результатов измерений акустической эмиссии некорректна.

В данной работе рассмотрены процессы, происходящие в стекле при воздействии на него инфракрасного лазерного излучения. Изучены результаты измерения АЭ как во время, так и после облучения стеклянного стержня одночастотным CO₂ лазером. Проведен анализ энергетических и спектральных характеристик акустических импульсов. Предложены возможные механизмы их возникновения.

2. Эксперимент

В работе [6] исследовались стеклянные образцы с прямоугольным поперечным сечением 6,0 х 4,7 мм², длина которых составляла ~ 48 мм. Схема экспериментальной установки была аналогична, описанной в [8]. На один из торцов образца (см. Рис. 1) подавался импульс от CO₂-лазера с длиной волны $\lambda = 10,6$ мкм и непрерывной мощностью $P \sim 5$ Вт. Для формирования импульса излучения применялся электромеханический прерыватель. Временная зависимость импульса регистрировалась с помощью фотоприемника ФСГ-22-3а1. Импульс имел форму, близкую к прямоугольной, его длительность равнялась $t_{umn} \sim 0,3$ сек, ширина переднего фронта $t_d \sim 0,03$ сек

Лазерное излучение фокусировалось на различные участки переднего торца с помощью линзы из NaCl, фокусное расстояние которой F = 150 мм. Диаметр лазерного пучка в плоскости торца составлял $D \approx 0,6$ мм. К противоположному торцу был подсоединен акустический датчик GT-300, входящий в аппаратно-программный комплекс СДС 1008, выпускаемой фирмой ЗАО «Специальные диагностические системы» [9]. Сигнал от датчика через широкополосный уси-

Рис.1. Схема экспериментальной установки.

4

литель подавался на анализатор импульсов акустической эмиссии, и затем выводился для регистрации на персональный компьютер.

С помощью специализированной программы «Маэстро» фиксировались, в частности, время наступления акустического события (с точностью до 1 мкс), его энергия, максимум амплитуды и частотный спектр. Импульсы акустической эмиссии регистрировались в течение 40 минут после начала лазерного воздействия.

На Рис. 2 показан начальный участок записи АЭ для пяти экспериментов, на котором видно время появления акустических событий и их максимальная амплитуда в относительных единицах. Верхний график соответствует инфракрасному импульсу CO₂ лазера. Амплитуды импульсов акустической эмиссии изменялись в основном в пределах (30÷40) дБ. Исключение составляет импульс, который наблюдается во всех пяти экспериментах в окрестности точки 9,7 сек

Рис. 2. Начальный участок временной зависимости акустической эмиссии для пяти экспериментов. Верхний график соответствует импульсу CO₂-лазера.

(отмечен более толстой вертикальной линией на заштрихованном участке на Рис. 2) и амплитуда которого на несколько порядков больше, чем у других.

Во время воздействия лазерного импульса на образец, в каждом из рассматриваемых экспериментов зарегистрировано около 20 акустических событий. Среднее время между импульсами на этом участке составляет ~ 13 мсек. По окончании воздействия во всех пяти случаях частота появления импульсов АЭ существенно уменьшается, и за ~ 40 минут зафиксировано от 10 до 70 акустических событий.

3. Основные процессы при лазерном испарении материалов.

При лазерном воздействии на вещество характер возникающих процессов существенно зависит как от свойств материала (теплопроводность, теплоем-кость, температуры и удельные энергии плавления и испарения, плотность, ко-эффициенты отражения и поглощения), так и от параметров лазерного излучения (длина волны, мощность, длительность импульсов, и диаметр пучка).

В зависимости от значений совокупности этих факторов лазерное разрушение материалов может быть основано на различных механизмах: испарении, плавлении с удалением расплава из зоны облучения, химических реакциях (горении, термодеструкции и др.) и термораскалывании. При лазерном разрушении в режиме испарения температура материала в зоне облучения выше температуры кипения и его удаление происходит в виде парокапельной фазы. Для того, чтобы материал за время действия лазерного импульса расплавился и закипел, необходимо, чтобы плотность энергии в импульсе Q была больше критического значения $Q_{\kappa p}$, определяемого выражением [10]

$$Q_{\kappa p} = \rho \cdot c_p \cdot T_{ucn} \cdot \sqrt{a \cdot t_{uMn}} \tag{1}$$

где ρ – плотность вещества, c_p – удельная теплоемкость, T_{ucn} – температура кипения, a – коэффициент температуропроводности. Такой режим очень часто ре-

6

ализуется на практике – при лазерной обработке органических материалов, многих видов стекол, минералов и т.д. Общая картина в этом случае может быть представлена следующими явлениями [10,11].

При падении электромагнитной волны на образец из непрозрачного материала основная часть излучения поглощается поверхностью и энергия передается твердому телу. Увеличение температуры поверхности до точки кипения происходит настолько быстро, что жидкая фаза не успевает образоваться в значительном количестве. При этом интенсивно образуются пары, начинающие расширяться под воздействием избыточного давления.

Удаление пара с места облучения происходит в виде струи, направленной от поверхности образца, в которой вместе с паром движутся сконденсированные капли вещества и другие продукты эрозии. Это приводит к возникновению реактивного импульса. В результате появления импульса отдачи и значительного температурного градиента в приповерхностном слое в образце образуются волны давления и термомеханические напряжения, которые могут привести к изменению внутренней структуры материала, сопровождающемуся акустическими импульсами.

Облако пара и других продуктов эрозии, истекающих из зоны облучения, приводят к ослаблению излучения, падающего на поверхность. Поток энергии, доходящий до поверхности материала, зависит от плотности этого облака. При определенной температуре поверхности материала плотность облака достигает значений, при которых лазерное излучение начинает в нем заметно поглощаться. Снижение энергии, поступающей на поверхность материала, снизит количество испаренного вещества и соответственно плотность облака. Поступление лазерной энергии на поверхность вновь увеличится, и возрастет количество испаренного вещества.

Таким образом, устанавливается автоколебательный режим, при котором температура поверхности, скорость испарения вещества и образование волн давления имеют самосогласованный пульсирующий характер. Период генерации волн давления *t**_{*pacy*} можно оценить с помощью выражения [10]

7

$$t *_{pacu} \sim \frac{\pi}{4} \cdot \lambda_T \cdot c_p \cdot \rho \cdot \left(\frac{T_{ucn}}{q}\right)^2 \tag{2}$$

где q – интенсивность лазерного излучения на поверхности образца, λ_T - коэффициент теплопроводности.

4. Результаты и их обсуждение

При проведении вычислений использовались следующие справочные данные: $c_p = 0,67 \cdot 103 \text{ Дж/(кг · град)}, \rho = 2,3 \cdot 103 \text{ кг/м3}, \lambda_m = 0,75 \text{ Вт/(м · град)}, T_{ucn} = 1997 \,^{\circ}\text{C}$ [12]. А также известная формула, определяющая коэффициент температуропроводности – $a = \lambda_T / (c_p \cdot \rho)$ [13]. В результате оказалось, что фактическая плотность энергии в импульсе $Q \approx 5,3 \text{ Дж/мм2}$ в несколько раз больше критического значения $Q_{\kappa p}$, вычисленного согласно (1) и равного 1,2 Дж/мм2. Это означает, что при лазерном облучении образца реализуется автоколебательный режим, описанный в предыдущем разделе, с пульсирующим характером волн давления и термомеханических напряжений.

С помощью выражения (2) для условий наших экспериментов был рассчитан период генерации волн давления t^*_{pacy} , величина которого равняется ~ 12 мсек. В то же время в пяти наших экспериментах средний промежуток времени между акустическими импульсами $t^*_{эксп}$ лежит в пределах от 12 до 16 мсек.

Отметим, что при общем количестве импульсов, превышающем 100, величина пяти промежутков между ними приблизительно в два раза больше среднего значения, а еще одного – в три раза. Можно предположить, что в середине (или через третью часть) этих интервалов также образуются волны давления и термомеханические напряжения. Но их амплитуда либо недостаточна для возникновения акустической эмиссии, либо интенсивность появляющихся акустических импульсов ниже порогового уровня системы регистрации. В таком случае среднее расстояние между акустическими импульсами составит $t^*_{эксп} \sim 12$ мсек,

а среднее квадратичное отклонение $\Delta t^*_{_{3\kappa cn}} \sim 3$ мсек. Это неплохо согласуется с результатами наших вычислений. Энергия импульсов, зарегистрированных во время лазерного воздействия, составляет ~ 10^{-18} Дж, что характерно для АЭ, вызванной аннигиляцией дислокаций [14].

Рассмотрим процесс распространения теплоты в образце, ограничившись при этом грубой оценкой, поскольку точные и сложные расчеты в данном случае не совсем оправданы. Прежде всего, из-за большого разброса значений общих и теплофизических параметров стеклообразных материалов [15].

При падении инфракрасного излучения на поверхность стеклянного стержня в нем поглощается практически вся энергия лазерного импульса $W = P \cdot t_{umn} \sim 1,5$ Дж. Часть этой энергии идет на испарение из лунки небольшого количества стекла W_{ucn} , а остальная – на нагревание образца W_{harp} . Величина энергии, необходимой для испарения вещества составляет

$$W_{ucn} = \rho \cdot V_{ucn} [c_p (T_{ucn} - T_0) + L] \sim 0.5 \, \text{Дж}$$
(3)

где $V_{ucn} \approx 0,02 \text{ мм3}$ – объем испарившегося из лунки вещества, T_0 – температура окружающей среды, т. е. начальная температура материала перед лазерным воздействием, L = 9500 Дж/г – скрытая теплота испарения [15]. Величина энергии, пошедшей на нагревание равняется $W_{harp} = W - W_{ucn} \sim 1 \text{ Дж}.$

Расчет распределения температуры в образце после окончания лазерного воздействия проводился с использованием решения уравнения теплопроводности для модели мгновенного точечного источника (пренебрегая теплоотдачей с поверхности), согласно которому температура на поверхности образца определяется выражением [16]

$$T(r,t) = \frac{2W_{\text{Harp}}}{c_p \rho \cdot (4\pi a t)^{3/2}} \cdot \exp\left\{-\frac{r^2}{4at}\right\} + T_0$$
(4)

где r – расстояние от центра пучка до рассматриваемой точки ($r \ge 0,3$ мм), t – время после окончания лазерного импульса.

Как уже отмечалось в Разделе 2, во всех пяти экспериментах через $(0,26\div0,31)$ сек после окончания лазерного воздействия, наблюдается акустический импульс, амплитуда которого на несколько порядков больше, чем у всех остальных зарегистрированных импульсов. Согласно выражению (4) в этот период часть образца, нагретая выше температуры текучести $T_m \approx 700 \div 850^\circ$ C, проходит через температурный диапазон, соответствующий процессу стеклования $T_c \approx 400 \div 600^\circ$ C [17]. Это иллюстрируется Рис. 3, где показаны временные зависимости температуры для различных точек образца: Кривая 1 – расстояние от центра пучка до рассматриваемой точки r = 0,3 мм, 2 - r = 0,4 мм, 3 - r = 0,5 мм, 4 - r = 0,6 мм. Сплошные линии (Кривые 1 и 2) соответствуют области, в которой температура превышает T_m ; штриховые линии (3 и 4) – нет.

Это дает основание предположить, что мощные импульсы связаны с переходом части вещества из расплавленной фазы в твердую. Энергия импульсов

Рис. 3. Зависимости температуры для различных точек образца: Кривая 1 – расстояние от центра пучка до рассматриваемой точки *r* = 0,3 мм, 2 – 0,4 мм, 3 – 0,5 мм, 4 – 0,6 мм. Сплошные линии (Кривые 1 и 2) – область, нагретая выше температуры текучести; штриховые линии (3 и 4) – нет.

составляет ~ 10⁻¹² Дж, что согласуется с энергией, выделяющейся при образовании микротрещин [14].

Проведем сравнение частотных свойств рассматриваемых акустических событий. На Рис. 4 приведены типичные спектры импульсов, зарегистрированных во время (а) и через ~ 0,3 сек после окончания (б) лазерного воздействия. Видно, что в первом случае (а) спектральная зависимость лежит в относительно широком диапазоне – от ~ 20 кГц до ~ 1,5 МГц, занимая практически всю полосу пропускания системы измерения. Во втором (б) – имеет форму пика с максимумом на частоте ~ 0,5 МГц и шириной около 5 кГц. Такое существенное расхождение спектральных характеристик может свидетельствовать о различной физической природе этих импульсов, т. е. о различных источниках АЭ.

Рис. 4. Типичные спектры зарегистрированных акустических импульсов: а – во время лазерного воздействия, б – через ~ 0,3 сек после его окончания.

При анализе остальных акустических событий, зарегистрированных в течение 40 минут после лазерного импульса, ни повторяемости от эксперимента к эксперименту, ни какой либо закономерности в рамках каждого из пяти измерений обнаружить не удалось.

Подчеркнем еще раз, что приведенные в данном разделе результаты вычислений носят приблизительный оценочный характер, поскольку проведение более точных и сложных расчетов в данном случае не совсем целесообразно. Прежде всего, из-за большого разброса значений параметров стекла [15].

5. Заключение

Рассмотрены вопросы акустической эмиссии в стекле при воздействии на него инфракрасного лазерного импульса. Изучены результаты экспериментов по регистрации акустических импульсов, как во время, так и после облучения торца стеклянного стержня одночастотным CO₂ лазером.

Установлено, что в условиях нашего эксперимента плотность энергии в импульсе в несколько раз превышает критическое значение. Это приводит к реализации автоколебательного режима, при котором температура поверхности и скорость испарения вещества имеют самосогласованный пульсирующий характер. Автоколебания возникают из-за ослабления лазерного излучения, падающего на поверхность, облаком пара и других продуктов эрозии, истекающих из зоны облучения.

Удаление пара с места облучения происходит в виде струи, направленной от поверхности образца, и приводит к возникновению реактивного импульса. В результате появления импульса отдачи и значительного температурного градиента в приповерхностном слое в образце образуются волны давления и термомеханические напряжения, которые приводят к рекомбинации существующих дефектов, сопровождающейся акустическими импульсами. Рассчитанный период генерации волн давления $t^*_{pасч}$ согласуется со средним расстоянием между акустическими импульсами $t^*_{эксn}$ и составляет ~ 12 мсек. Энергия импульсов равна

~ 10⁻¹⁸ Дж и совпадает с энергией, вызванной аннигиляцией дислокаций.

Проведены оценки количества энергии, пошедшей на нагревание и испарение стекла, а также распределения температуры в образце после окончания лазерного воздействия. Установлено, что появление самых мощных из зарегистрированных акустических импульсов наблюдается в период, когда расплавленная часть образца проходит через температурный диапазон, соответствующий стеклованию. Энергия этих импульсов соответствует энергии, выделяющейся при образовании микротрещин, и составляет ~ 10⁻¹² Дж. Отсюда следует, что мощные импульсы связаны с возникновением микротрещин, вызванных переходом части вещества из жидкой фазы в твердую.

Авторы выражают благодарность Э.Н. Лотковой за помощь в проведении экспериментов, Генеральному директору ЗАО "СДС" А.Г. Пенкину и сотруднику ИМЕТ РАН М.М. Ляховицкому за предоставленное акустико-эмиссионное оборудование.

Литература.

1. H. Kishi, A. Matudoe, K. Yamashita, S. Nagasawa and Y. Fukuzawa. J. Acoustic Emission, 2012, v. 30, p. 1-10.

2. A. Larionov, Y.V. Marapulets, B.M. Shevtsov. Solid Earth, 2014, v. 5, p. 1293– 1300.

3. А.В. Буланов, И.Г. Нагорный, Е.В. Соседко. Журнал технической физики, 2013, том 83, вып. 8, с. 117–120.

4. E. Martinez-Gonzalez, I. Picas, J. Romeu and D. Casellas. Materials Transactions, 2013, Vol.54, No. 07, pp.1087-1094.

5. W. Ben Khalifa, K. Jezzine, S. Grondel, G. Hello and A. Lhémery. J. Acoustic Emission, 2012, v. 30, p. 137-151

6. Е.М. Кудрявцев, А.А. Лебедев, С.Д. Зотов, М.М. Ляховицкий, В.В. Рощупкин. Сборник трудов VIII Международной конференции «Фундаментальные пробле-

мы оптики – 2014». Санкт-Петербург, 20-24 октября 2014 г., с. 176 – 178.

7. А.А. Кузнецов. Препринт ФИАН, 2014, № 24, 21 с.; А.А. Кузнецов. Краткие сообщения по физике, 2015 (принято к публикации).

8. С.Д. Зотов, Е.М. Кудрявцев, Э.Н. Лоткова, М.М. Ляховицкий, А.А. Лебедев. Препринт ФИАН, 2013, № 6, 20 с.

9. http://www.sds.ru/

10. А.Г. Григорьянц, А.А. Соколов. Лазерная обработка неметаллических материалов, Книга 4. М.: Высш. шк., 1988, 191 с.

11. Ю.Ю. Протасов, Т.С. Щепанюк. Вестник МГТУ им. Н.Э. Баумана, Сер. "Естественные науки", 2008, № 4, с. 46-53.

12. А.П. Бабичев и др. Физические величины: Справочник. М.: Энергоатомиздат, 1991, 1232 с.

13. Физический энциклопедический словарь, Гл. ред. А.М. Прохоров. М.: Сов. энциклопедия, 1983, 928 с.

14. Ж. Желкобаев, В. Иванов, Ю. Новиков, П. Тодуа. Наноиндустрия, 2009, 6, с. 34-38.

15. Ю.В. Полежаев, Ф.Б. Юревич. Тепловая защита. М.: Энергия, 1976, 392 с.

16. А.Г. Григорьянц, И.Н. Шиганов, А.И. Мисюров. Технологические процессы лазерной обработки. М.: изд-во МГТУ им. Н. Э. Баумана, 2006, 664 с.

17. Г.К. Шрейбер, С.М. Перлин, Б.Ф. Шибряев. Конструкционные материалы в нефтяной, нефтехимической и газовой промышленности. М.: Машиностроение, 1969, 396 стр.

Сергей Дмитриевич ЗОТОВ Алексей Анатольевич КУЗНЕЦОВ Александр Анатольевич ЛЕБЕДЕВ О динамике появления акустических событий при облучении стеклянного образца импульсом СО₂ лазера

Формат 60х84/16. Бумага офсетная. Печать офсетная. Тираж 140 экз. Заказ №33. П.л.1 Отпечатано с оригинал-макета заказчика в типографии РИИС ФИАН 119991 Москва, Ленинский проспект 53