

препринт 15

В.И.БУЯКАС, А.И. ЕРОХИН, А.М. ЦХОВРЕБОВ, И.Е. МОЛОТОВ, В.А.ВОРОПАЕВ, А.Н.ЮДИН

ЗАДАЧА ВЫСОКОТОЧНОГО ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ КОСМИЧЕСКОГО РАДИОТЕЛЕСКОПА НА ОРБИТЕ И ВОЗМОЖНОСТЬ СОЗДАНИЯ ИК-ЛИДАРА НА БАЗЕ ИНФРАКРАСНОГО ТЕЛЕСКОПА АЗТ-33-ИК

Задача высокоточного определения положения космического радиотелескопа на орбите и возможность создания ИК-лидара на базе инфракрасного телескопа АЗТ-33-ИК.

В.И.Буякас, А.И.Ерохин, А.М.Цховребов Физический институт им. П. Н. Лебедева РАН

> И.Е.Молотов, В.А.Воропаев, А.Н.Юдин Институт прикладной математики им. М. В. Келдыша РАН, Москва

Аннотация. Для решения задачи высокоточного определения положения космического радиотелескопа на орбите предлагается использовать всепогодную лазерную локацию в дальнем ИК диапазоне на длине волны 10 микрон. Рассматривается возможность создания измерительного инструмента – ИК-лидара – на базе инфракрасного телескопа АЗТ-ЗЗ-ИК.

Abstract. For efficient operation of space-ground based radio interferometer the precise online information about the base of the instrument is required. To solve the problem the far infrared satellite laser ranging at the wavelength 10 microns is proposed. The possibility to create a measuring tool - IR lidar - on the basis of infrared telescope AZT-33-IR is considered.

Введение. Эффективное использование возможностей наземно-1. космического радиоинтерферометра на сегодняшний ограничено день точностью и скоростью определения положения космического телескопа на Существующие орбите [1,2]. радиотехнические методы контроля не обеспечивают требуемую точность [3,4]. В связи с этим разрабатываются различные численные методы восстановления траектории движения и обработки результатов наблюдения. Альтернативный метод измерения - лазерная локация в видимой области спектра - ограничен погодными условиями.

Для преодоления этого ограничения в задаче прецизионного определения положения космического телескопа на орбите нами было предложено [5,6] использовать всепогодную локацию в дальней ИК области спектра на длине волны 10 микрон. В настоящей работе в качестве следующего этапа рассматривается возможность создания такого локатора (лидара) на базе конкретного инфракрасного телескопа АЗТ-ЗЗ-ИК Института солнечно земной физики РАН (Иркутск).

2. Инфракрасный телескопа АЗТ-33-ИК.

Ранее с целью повышения точности и оперативности лазерной локации удаленных космических объектов (включая орбитальные элементы наземнорадиоинтерферометра) мы предложили космического [5,6] использовать локацию в дальнем ИК-диапазоне на длине волны 10 микрон. При этом проблемы локации космических объектов на дальностях вплоть до 300000 км рассматривались в основном в контексте различных вариантов построения систем дальнего ИК диапазона. потенциально способных приемных приблизиться к фундаментальному пределу чувствительности. В предлагаемой работе обсуждается возможность создания лидарного комплекса на базе инфракрасного телескопа АЗТ-33-ИК (рис.1).

Рассматривается вариант оптической схемы такого лидара. На основе характеристик телескопа и импульсного лазера, предлагаемых для использования в составе комплекса, приводится оценка ожидаемых параметров системы.

Интервал рабочих длин волн телескопа A3T-33-ИК составляет 0,3 мкм $\leq \lambda \leq 1,3$ мкм. Однако измерения характеристик в области 10 мкм показали, что двойное пленочное покрытие зеркала Al/SiO₂ обеспечивает приемлемый коэффициент отражения зеркального объектива (рис.2) и в дальнем ИК диапазоне

Рис. 1. Инфракрасный телескоп АЗТ-33-ИК Саянская обсерватория ИСЗФ СО РАН.

Рис. 2. Параболическое зеркало телескопа АЗТ-33-ИК. На вкладке оптическая схема объектива (F=30084 мм, относительное отверстие 1/20). Обозначения: 1 – главное зеркало объектива f=3448,8 мм; 2 – вторичное зеркало f= -518,4 мм.

3. Импульсный ТЕА СО₂ лазер.

В качестве источника дальнего ИК излучения предлагается использовать импульсный ТЕА CO_2 лазер (Transversely Excited Atmospheric). Это лазер с поперечной накачкой, использующий рабочего газа при атмосферном давлении [7]. Сравнительно высокое ($p\sim1$ атм) давление газовой смеси CO_2 :N₂ позволяет получить в такой конструкции (рис.3) большую (1 Дж и более) энергию в импульсе. В этом случае для обеспечения электрического пробоя требуется высокая напряженность электрического поля, которое создается в разрядном промежутке между электродами, расположенными вдоль формируемого пучка (поле *E* поперечно пучку генерируемых фотонов).

Основной разряд в щелевом промежутке (конденсаторы C_1 рис.4) инициируется «равномерной» ультрафиолетовой предионизацией, которая обеспечивается пробоем гирлянды конденсаторов с игольчатыми электродами (C_2 рис.4). Предионизация начинается после подачи импульса на управляющий вход («поджиг») высоковольтного тиратрона, в результате чего тиратрон открывается, и напряжение с высокой скоростью нарастания передается с конденсаторов C_1 в разрядный промежуток, а также на гирлянду C_2 , микропробои которой создают ультрафиолетовое излучение, необходимое для ионизации газа.

Типовые характеристики лазера подобной конструкции: энергия излучения ~1 Дж в импульсе; частота следования импульсов до 10 Гц; импульсная мощность 3 МВт; диаметр пучка 1 см; расходимость излучения близка к дифракционному пределу (~10⁻³ рад), форма импульса лазерной генерации показана на вкладке к рис.4.

Рис.3. Импульсный CO₂ лазер с поперечной накачкой. Обозначения: 1 - корпус лазера; 2 - окно для выхода излучения (призма с углом Брюстера из Ge или KCl и т.п.); 3 - система крепления и юстировки глухого зеркала резонатора; 4 - система предионизации разрядного промежутка (C₂ рис.4); 5 - скоростные конденсаторы основного разряда (C₁ рис.4).

Оптимизируя напряжение питания лазера, давления смеси (~1атм) и соотношение парциальных составляющих можно изменять как общую энергию в

импульсе, так и пиковую мощность, определяемую передним пиком. Для оценки мощности в пике для данной конструкции целесообразно взять цифру $\frac{1}{3}$ Дж при продолжительности пика ~100 нсек, что соответствует пиковой мощности ~ 3×10^6 вт. Подбирая оптимальное соотношение компонент смеси (уменьшая парциальное давление Не, и добавляя незначительное количество H₂) можно также добиться устойчивой импульсно-периодической работы лазера (до 10 Гц).

Повышая давление смеси до ~2-Затм, и переводя лазер в режим активной синхронизации продольных мод [7], можно перевести лазер в пичковый режим (mode - locking). При этом пиковая мощность возрастет на порядок, а каждый импульс из цуга сократится до 1-2 нсек, что позволит на полтора порядка повысить точность определения временной задержки.

Рис.4 Электрическая схема CO₂ TEA лазера. На вкладке показана характерная временная зависимость интенсивности генерируемого излучения [8]: около $\frac{1}{3}$ излучаемой энергии приходится на передний пик с крутым передним фронтом; «хвост» импульса, содержащий примерно $\frac{2}{3}$ всей энергии. Размер «хвоста», определяется эффективностью передачи энергии возбуждения от N₂ к молекулам CO₂ (уменьшая долю N₂ можно уменьшить величину «хвост»)

Однако наличие современных электронных микросхем, способных производить запись выборки с временем единичной записи на уровне сотни пикосекунд, делает, вообще говоря, необязательным переход используемого лазера в режим синхронизации мод. Определение задержки с точностью, превышающей длительность лоцирующего импульса возможно осуществить, производя корреляционные измерения отраженного сигнала по отношению к временному профилю исходного импульса, записанного на старте процедуры.

Угловая направленность излучения, которая в идеале должна приближаться к дифракционному пределу, определяется в нашем случае, как особенностями резонатора, так и коэффициентом усиления на проход. Газоразрядный промежуток лазера имеет размеры 40×60×700 мм³, поэтому для оптимального снятия инверсной заселенности внутри камеры установлены глухие зеркала так, что лазерный пучок дважды проходя через межэлектродный промежуток, весьма плотно его заполняет. Конфигурацию резонатора для получения направленности пучка близкой к дифракционной можно сделать либо линейной с неустойчивым резонатором, либо Т-образной. Радиус вогнутого зеркала для первого варианта ~ 20 м., ℓ ~1,5 м.

При числе Френеля ($N_{\Phi}=d^2/8\lambda\ell$) порядка двойки эти схемы почти равноценны, но при больших значениях N_{Φ} (как показано в [9]) расходимость лазера в линейной схеме увеличивается, в то время как направленность излучения в Т-образном резонаторе улучшается почти вдвое при возрастании N_{Φ} до 10.

4. Ожидаемые характеристики ИК-лидара.

На рис.5 представлен вариант оптической схемы 10-микроного лидара на основе телескопа АЗТ-ЗЗ-ИК. Импульс лазера фокусируется в плоскость изображения германиевой линзой f~20 см. Излучение попадает на ось телескопа, отражаясь от зеркала, закрепленного на вращающемся основании. На момент прихода отраженного сигнала зеркало в данной точке отсутствует, а излучение собирается на площадку скоростного фотоприемника.

Рис.5 Эскизный вариант оптической схемы 10-микроного лидара на базе телескопа типа АЗТ-33-ИК.

Необходимо заполнить апертуру телескопа, согласуя относительное отверстие телескопа - 1:20 с лазером, т.е. фокусируя сантиметровый лазерный пучок 20 см линзой в плоскость изображений. При этом пучок будет полностью заполнять 20 см зеркало телескопа, и не представляет какой либо опасности с точки зрения пробоя оптики. Попадая на большое зеркало телескопа ($D\approx1,5$ м) излучение будет также плотно его заполнять. Интенсивность же в фокусе 20см

линзы будет ~ $W/(\lambda^2 \theta^2)$, что составляет ~ 5×10^9 вт/см², что немного меньше порога пробоя воздуха.

Предполагаемое размещение CO₂-лазера на телескопе АЗТ-ЗЗИК показано на 6.

Рамкой показано примерное расположение блока на узле оправы главного зеркала телескопа. Для минимизации возникающего момента и соответствующего дисбаланса планируется применение излома оптический оси согласно приведённой схеме. Также возможно применение поворотного зеркала и в приёмном канале. Это позволяет избежать проблем с балансировкой, жёсткостью и нагрузкой на опорно-поворотное устройство.

Рис.6. Вариант размещения СО₂-лазера на телескопе АЗТ-ЗЗИК.

Оценим ослабление лазерного импульса предельного дифракционного качества, выходящего из телескопа с диаметром D (рис.6) и имеющего вследствие дифракционной расходимости в области удаленного объекта диаметр пятна (λ /D)L.

При эффективном размере уголкового отражателя - d, потери (определяемые излучением, не попадающим в апертуру уголкового отражателя) составят $\left(\frac{\lambda}{d D} L\right)^2$. На обратном проходе, несмотря на то, что дифрагировать отраженный пучок будет сильнее, потери будут такими же. В итоге потери на

дифракцию составят $\left(\frac{\lambda}{d D}L\right)^{-4}$. И на расстоянии в 300000 км мощность принимаемого сигнала будет ~5×10⁻¹⁶ от падающей, что в нашем случае составит ~10⁻⁹ вт.

Рис.6 Иллюстрация, показывающая, как вследствие конечной дифракционной расходимости пучка возникают дифракционные потери мощности сигнала, отраженного от облучаемого объекта.

Для оценки теплового шума, создаваемого на детекторе фоновым излучением большого зеркала, условно разобьем всю его площадь $\pi D^2/4$ на идеально отражающую часть $K\pi D^2/4$ и «абсолютно черный» остаток (1-K) $\pi D^2/4$, где K – коэффициент отражения зеркала, D=1,5м. Тогда тепловая мощность, излучаемая этим остатком, определяется планковским распределением в спектральном интервале

 $\Delta \omega \approx 2\pi/\tau \approx 6,28/10^{-9}$ сек= $6,28 \times 10^{9}$ сек⁻¹, отвечающем длительности лоцирующего импульса τ , т.е.

$$(1-K)\frac{\pi D^2}{4} \times \frac{\hbar}{\pi^2 c^3} \int_{\Delta \omega} \frac{\omega^3}{e^{\frac{\hbar\omega}{kT}} - 1} d\omega \approx (1-K)\frac{\pi D^2}{4} \times \frac{15}{\pi^4} \sigma T^4 \frac{\left(\frac{\hbar\omega}{kT}\right)^3 e^{-\frac{\hbar\omega}{kT}}}{1 - e^{-\frac{\hbar\omega}{kT}}} \frac{\hbar}{kT} \Delta \omega,$$

где $\sigma \approx 5,67 \times 10^{-8}$ Вт/(м²K⁴), $\frac{\hbar \omega}{kT} = \frac{2\pi \hbar c / \lambda}{kT} = \frac{2\pi \hbar c / (10 \text{ мкм})}{k(300K^{\circ})} \approx 3$. Эта мощность высвечивается в телесный угол 2π из которого на чувствительную площадку детектора s_{det} попадает примерно $\frac{s_{det}}{2\pi (2l_1 + l_2)^2}$ ее часть ($l_1 = 3$ м $l_2 = 1$ м рис.5). В итоге мощность теплового шума, попадающего на детектор, оценивается по формуле

$$(1-K)\frac{\pi D^2}{4} \times \frac{15}{\pi^4} \sigma T^4 \frac{\left(\frac{\hbar\omega}{kT}\right)^3 e^{-\frac{\hbar\omega}{kT}}}{1-e^{-\frac{\hbar\omega}{kT}}} \frac{\hbar}{kT} \Delta \omega \frac{s_{\rm det}}{2\pi (2l_1+l_2)^2} \approx 10^{-4} (1-K) s_{\rm det} ,$$

позволяющей сопоставить этот фон с мощностью отраженного сигнала ~ 10^{-9} Вт. Такое сопоставление $10^{-9}>10^{-4}(1-K)s_{det}$ задает ограничение площадь рабочей поверхности детектора $s_{det}<(1-K)^{-1}10^{-5} M^2 \approx (1-K)^{-1}3 \times 3 MM^2$.

5. Возможные пути создания высокочувствительных приемников дальнего ИК диапазона.

Завершая описание схемы лидара, кратко остановимся на оценках требуемых параметров приемного элемента. Вследствие дифракционных потерь из исходной энергии лазерного импульса 0,3 Дж до приемника дойдет ~ $1,5 \times 10^{-16}$ Дж или примерно 15000 штук 10-микронных фотонов. Средняя мощность отраженного сигнала в соответствие с предыдущими оценками составит $\langle P \rangle \approx 10^{-9}$ Вт. Чтобы принять такой импульс, не ухудшая разрешение системы по дальности, необходимо работать в широкой полосе частот $\delta f \ge 1/\tau = 1\Gamma\Gamma \mu$. Для этого требует обеспечить у приемника чувствительность на уровне хотя бы $\langle P \rangle / \sqrt{\delta} f = 3 \times 10^{-14} Bm / \sqrt{\Gamma} \mu$ в режиме квадратичного детектирования.

Стандартные полупроводниковые фотодетекторы на основе кадмий-ртутьтеллура (CdHgTe) [10], используемые в дальнем ИК диапазоне, обеспечивают при охлаждении до азотных температур NEP (Noise Equivalent Power [11]) на уровне $10^{-13}Bm/\sqrt{\Gamma u}$, что «в разы не дотягивает» до приемлемого уровня. Поиск замены традиционных КРТ более чувствительными приемниками составляет основное содержание исследовательских работ авторской группы [5,6] (в частности рассматриваются варианты детектирования в однофотонном режиме приемлемые для дальнего ИК диапазона). Как известно [12], туннельные МІМструктуры (металл/изолятор/металл) способны действовать в дальней ИК области ($\lambda \ge 10$ мкм, f $\le 3 \times 10^{13}$ Гц) в режиме классического (в смысле «не квантового») детектирования, благодаря, с одной стороны сильной нелинейности вольт-амперной характеристики (ВАХ), а с другой благодаря $\tau = R_D C = 10^{-13} \div 10^{-15} ce\kappa$ исключительно низкой постоянной времени где $R_{D} = \frac{\partial U}{\partial I} = 10 \div 1000 O_{M}$ C $\approx 10^{-16} \Phi$. Фактически тот же самый принцип действия, отвечающий режиму классического детектирования, реализуется и в SISсмесителях (туннельная структура типа сверхпроводник/изолятор/сверхпроводник [13,14]), где В результате искусственного подавления джозефсоновского тока слабым магнитным полем на вольт-амперных характеристках в области V≈2e∆, отвечающей порогу разрушения куперовских пар, образуется участок co «сверхсильной»

нелинейностью. Вольт на Ваттная характеристика достигает здесь огромных значений порядка 10^5 В/Вт, однако, к сожалению, в 10-микронной области спектра высокая чувствительность $NEP \sim 10^{-15} Bm/\sqrt{\Gamma \mu} y$ подобных структур не может быть реализована, т.к. разрушая куперовские пары своей «слишком большой» энергией $\hbar\omega_{10_{MKM}} >> 2e\Delta$, фотоны будут сглаживать крутизну рабочего участка ВАХ. Выше отмечалось, что и в SIS-смесителях и в МІМ-структурах классический режим детектирования основан на сильной нелинейности ВАХ, которая, однако, в свою очередь реализуется благодаря особенностям такого «чисто квантового» эффекта как туннелирование носителей заряда через «классически непреодолимый» потенциальный барьер.

В противоположность классическому квантовый режим детектирования реализуется обычно либо в полупроводниковых фотосопротивлениях, либо в специальных сверхпроводящих структурах. В первом случае внутренний фотоэффект приводит, вследствие поглощения кванта излучения, К «высвобождению» носителя заряда путем переброса его через запрещенную зону в зону проводимости, и, таким образом, к появлению проводимости, а во втором случае вследствие развала куперовской пары – к появлению над сверхпроводящей щелью двух квазичастиц и, таким образом, к возникновению проводимости по «квазичастичному» каналу. Приборы С внешним фотоэффектом типа быстрых фотоэлементов и фотоумножителей здесь не имеет смысла рассматривать, т.к. высокая по отношению к энергии кванта в дальней ИК области работа выхода их фотокатодов не позволяет использовать их для регистрации 10-микронного излучения прямой («красная граница» ИХ работоспособности соответствует примерно 2 мкм). Высокая эффективность 10-микронных фотонов достигается В полупроводниковых регистрации приборах именно тогда, когда полупроводник имеет ширину запрещенной зоны порядка энергии кванта G~ħ ω_{10 мкм</sub> или в случае сверхпроводников, когда щель между квазичастицами и основным уровнем куперовских пар примерно совпадает с квантом излучения $2e\Delta \sim \hbar\omega$ (к сожалению здесь $\hbar\omega <<\hbar\omega_{10 \text{мкм}}$). росту Выполнение этих резонансных условий способствует сечения взаимодействия излучения с электронной подсистемой детектора, при этом квантовый выход асимптотически устремляется к единице (в некоторых случаях квантовый выход может даже превысить единицу, что обычно объясняется специальными нелинейными моделями взаимодействия излучения с веществом).

Рассмотрим режим квантового детектирования в «смешанной» туннельной MIS структуре типа металл/изолятор/сверхпроводник, когда излучение падает на структуру co стороны металлического электрода. Сместим структуру небольшим отрицательным напряжением |-V|< Δ , приложенным к металлу относительно сверхпроводника. Этого напряжения окажется явно недостаточно для переноса носителей через туннельный барьер с уровня Ферми металла в квазичастичную область сверхпроводника, и поэтому в отсутствии излучения ток через такой «слабо смещенный» барьер будет иметь нулевые значения. Поглощение квантов 10-микронного излучения, падающего на пленочный металлический электрод, приведет к возникновению в нем горячих носителей, отстоящих от уровня Ферми на интервал энергий существенно (на порядок и более) превышающий сверхпроводящую щель, что позволит им туннелировать в квазичастичную область энергетического спектра сверхпроводника. Таким образом, обеспечивается ненулевой ток, пропорциональный мощности Однако, чтобы получить высокое значение регистрируемого излучения. выхода необходимо каким-то образом квантового включить механизм взаимодействия 10-микронного излучения с электронной резонансного подсистемой металла. Мы предлагаем для обеспечения отвечающего условию резонанса значения энергетического зазора между основным состоянием электрона в металле, находящимся на уровне Ферми, и нижним возбужденным состоянием (E_N-E_F)≈ħω_{10мкм}, использовать эффект размерного квантования [15] в тонких металлических пленках. В поперечном направлении для свободного носителя заряда пленка металла фактически представляет собой яму с высокими потенциальными стенками, что позволяет в приближении бесконечно высоких стенок с учетом пространственного квантования поперечного импульса записать электронный спектр в виде

$$E_{N} = E_{Kin}(p_{x}, p_{y}, N) = \frac{p_{x}^{2}}{2m_{x}} + \frac{p_{y}^{2}}{2m_{y}} + \frac{\pi^{2}\hbar^{2}N^{2}}{2m_{z}z^{2}}$$

(пространственное квантование отвечает граничным условиям для уравнения Шредингера, требующим чтобы узлы волновой функции находились при Z₁ и Z₂, соответствующих расположению внешней и внутренней стенки; где Z₂-Z₁=z толщина пленки). Таким образом, энергию соответствующего квантоворазмерного уровня можно «приподнять» над уровнем Ферми, выращивая достаточно тонкую пленку из выбранного металла т.к. Е_N →∞ при z→0. Это обстоятельство позволяет соответствующим подбором толщины обеспечить выполнение резонансных условий (Е_N-Е_F)≈ћω_{10мкм}, что будет способствовать значительному росту квантовой эффективности детектора. Ранее было показано [16-18], что при лазерном напылении наноразмерных

пленок висмута размерные энергетические уровни удается смещать на величины вплоть до одного электрон-Вольта, о чем в условиях ультраквантового предела $(E_1>E_F)$ свидетельствовало заметное снижение красной границы внешнего фотоэффекта (примерно на 1 эВ при толщине $z \approx 5$ нм). Эти эксперименты демонстрируют, что в металлах с низкой концентрацией свободных носителей (т.е. полуметаллах, вырожденных полупроводниках, инверсионных слоях и др. электронных системах) обеспечение резонансных условий $(E_N-E_F)\approx\hbar\omega_{10}$ мкм достигаются на основе эффекта размерного квантования при вполне доступных в технологическом отношении толщинах внешнего электрода.

В качестве альтернативы металлическому электроду с размерным квантованием в виде сверхтонкой пленки может быть выбран вискер, т.е. металлическая нить нанометрового диаметра (серое олово и т.п.), в которой импульс электрона квантуется уже не в одном (z), а сразу в двух направлениях (x, y).

Резонансные условия типа ΔЕ≈ћω_{10мкм}≈0,1эВ также могут быть реализованы и в магнитной электронной подсистеме. Применить здесь «обыкновенный» электронно-парамагнитный не удается т.к. требуемое энергетическое расщепление парамагнитного уровня в 0,1эВ обеспечивается для электрона с типовым значением g-фактора g≈2 нереально большим внешним полем В≈1000Тл. Однако, такое расщепление не сложно получить за счет эффектов квантового обмена в ферро или антиферромагнитной системе $\Delta E = |E_{\uparrow\uparrow} - E_{\uparrow\downarrow}| = 2J_{ex}$, где $J_{ex} \approx \frac{1}{2}kT_{C}$ - обменный интеграл, а температура магнитного упорядочивания Т_С может достигать в совершенно не экзотических материалах 1000К°, так, что kT_C≈0,1эВ)≈ћω_{10мкм}.

Рассмотрим антиферромагнетик, В котором ниже температура все электронные спины упорядочивания выстроены антипараллельно, вследствие чего суммарный магнитный момент оказывается на уровне нуля. Резонансное поглощение каким-либо электроном кванта 10-микронного излучения приведет к перевороту его спина, при этом суммарный магнитный увеличится на один магнетон Бора µ_в. Оценки, момент аналогичные представленным в [19,20] для парамагнитного случая, позволяют пересчитать поглощенную энергию δE в магнитный отклик спиновой системы $\delta \phi = \frac{\mu_0 \delta E}{\Phi_0 B_{res} z}$, где $\delta\phi$ - отклик в единицах кванта магнитного потока $\Phi_0 = \pi \hbar / e = 2,07 \times 10^{-15} \text{B}$ б, $\mu_0 = 4\pi \times 10^{-7} \Gamma$ н/м – проницаемость вакуума, z – толщина поглощающей антиферромагнитной пленки, В_{res} - «остаточное поле» роль которого в случае

ферро антиферромагнетика или выполняет $B_{eff} \approx 2J_{ex}/\mu_B \approx kT_C/\mu_B \approx 0,13B/\mu_B \approx 1000Tл.$ Подстановка конкретных числовых значений δЕ≈1,5×10⁻¹⁶Дж (см. выше: энергия полученная на Земле после отражения от лоцируемого объекта), В_{res}≈1000Тл, z≈3нм приводит к значению магнитного отклика на уровне 0,03 кванта магнитного потока. Нормируя полученное значение бо на квадратный корень из ширины частотной полосы, обеспечивающей временное разрешения 1 нсек, получим требуемое значение чувствительности магнитометра $0.03 \Phi_0 / \sqrt{10^9} \Gamma \mu \approx 10^{-6} \Phi_0 / \sqrt{\Gamma} \mu$, что «как раз» и соответствует параметрам «хорошего» современного (но отнюдь не рекордного) сверхпроводящего квантового интерферометра – SQUIDa. При этом большое техническое удобство такой схемы определяется формальной независимостью магнитного отклика бо от поперечных размеров антиферромагнитного элемента, на который должно фокусироваться принимаемое 10-микроное излучение. Вследствие нелимитированности размера приемного элемента, связываемое с ним кольцо сверхпроводящего трансформатора потока может иметь микронный диаметр, что исключает потери сигнала, обычно возникающие из-за проблем согласования макроскопического кольца с микроскопическим DC-SQUIDoм.

6. Заключение.

Следует признать, что применение телескопа в качестве локационной антенны, вообще говоря, не является примером высокой эффективности использования уникальных приборов. Телескоп - прибор существенно более сложный и дорогой по сравнению с антенной лидара, которая должна лишь фиксировать наличие объекта, в то время как телескоп рассчитан на воспроизведение его изображения с минимальными по возможности искажениями. Однако на стадии разработки использование телескопа, с его не только высококлассной оптикой, но и отработанной прецизионной механикой слежения и наведения, представляется вполне оправданным.

Одновременно отметим еще одну интересную возможность использования телескопа «по его прямому назначению» совместно с импульсным CO₂ лазером. Изображение небольших объектов (в том числе представляющих астероидную опасность) на тысячи километровых дальностях (в отличие от звезд) можно фиксировать, только тогда, когда они выходят из тени Земли. Для фотографирования таких темных и, как правило, холодных тел необходима внешняя подсветка. Роль такой «наземно-космической фотовспышки» может

сыграть импульсный МегаВаттный лазер, причем генерация в 10 мкм диапазоне даже в случае случайного попадания в ИСЗ не вызовет сбой оптических систем спутника, ибо стекло не пропускает 10мкм излучение.

Оценим возможности цифровой записи изображений 10-метровых объектов, удаленных от Земли на L=1000 км с использованием импульсной лазерной подсветки в диапазоне $\lambda = 10$ мкм. Дифракционная расходимость пучка при выводе лазерного импульса в космическое пространство через телескоп типа АЗТ-33-ИК обеспечивается на уровне $\lambda/D\approx 10^{-5} pa\partial$. Такая расходимость позволяет осветить 10 или более метровый объект на 1000-километровой дальности, передав при этом всю энергию импульса. Отраженное от объекта излучение «разлетится» в телесный угол 2*π*, вследствие чего из всей импульсной мощности ЗМВт в зеркало телескопа вернется $(\frac{1}{4}\pi D^2)/(2\pi L^2)=2,5\times 10^{-13}$ его часть и в итоге от 3 МВт останется примерно 1 мкВт. Если «этот микроВатт» разделить на миллион (1000×1000) пикселей фоточувствительной матрицы, то на отдельный элемент будет попадать 1 пикоВатт. Пусть матрица построена из охлаждаемых КРТ элементов [21] с NEP на уровне 10⁻¹³Bm/√Ги, тогда это позволит вести съемку с частотой 10Гц, что как раз соответствует оптимальной частоте следования импульсов СО₂ ТЕА лазера.

Фотографии инфракрасного телескопа АЗТ-33-ИК и его оптическая схема были любезно предоставлены сотрудниками Саянская обсерватория Института солнечно-земной физики СО РАН В.И.Тергоевым и М.В.Еселевичем.

Работа выполнена при поддержке фонда РФФИ, проект № 13-08-01190.

Литература

1. http://www.asc.rssi.ru/radioastron/description/intro_eng.htm

2. http://www.vsop.isas.jaxa.jp/vsop2/

3. Bebenin, R., Ponomarev, Yu., Stepanyants, V., "Navigation of the RadioAstron Mission,", Fall 2009 ILRS Technical Workshop "SLR Tracking of GNSS Constellations", Metsovo Greece, September 14-19, 2009. (ILRS-International laser ranging service – Международная служба лазерной локации.)

4. Yoshiharu Asaki, Hiroshi Takeuchi, Makoto Yoshikawa, Next Space-VLBI Mission, VSOP-2, and the Precise Orbit Determination with GNSS Navigation and SLR. Poceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008). September 16-19, 2008, Savannah, Georgia, USA. 5. Буякас В.И., Жерихина Л.Н., Цховребов А.М. Способ высокоточного определения положения космического телескопа. Труды международной конференции CAD/CAM/PDM-2012 http://lab18.ipu.ru/projects/conf2012/contenst.htm.

6. Дресвянников М.А., Ерохин А.И., Цховребов А.М., Жерихина Л.Н., Приймаченко В.В. Приемники космической локации в диапазоне λ=10мкм. Труды 7-ой Всероссийской конференции Необратимые процессы в природе и техники, часть 3, с.51-54 (2013)

7. Звелто О. Принципы лазеров. Москва: «Лань» (2008).

8. Bhadani P.K., Harrison R.G. Efficient long pulse TE-CO₂ laser using magnetic-spiker excitation. Rev. Sci. Instrum. 63, 5543. (1992).

9. Кузнецов М.Н., Куликов О.Л. Выделение продольной и поперечной мод в широкоапертурном лазере с многозеркальным резонатором, Квантовая электроника, 1991, **18** (9), 1114–1117.

10. Зи С. Физика полупроводниковых приборов (книга 2). Москва: «Мир» (1984).

11. Робинсон Ф.Н. Шумы и флуктуации в электронных схемах и цепях. Москва: «Атомиздат» (1980).

12. Протопопов В.В., Устинов Н.Д. Лазерное гетеродинирование. Москва: «Наука» (1985).

13. Belitsky V.Y., Tarasov M.A., Kovtonjuk S.A., Filippenko L.V., Kaplunenko O.V. Low Noise Completely Quasioptical SIS Receiver for Radioastronomy at 115 GHz. Int. J. of Infrared and Millimeter Waves, v. 13, 4, pp. 389-395, (1992).

14. Zherikhina L.N., Tskhovrebov A.M., Murzin V.N. Josephson junction THz spectrometer based on high-temperature superconductors // Europe union GDR-E "Semiconductor sources and detectors of THz radiation", Bordeaux, 1-2 June 2007.

15. Frölich H. Physica v.4, p.406 (1937)

16. Жерихин А.Н., Шубный Г.Ю., Жерихина Л.Н., Прокопьев Е.Г., Цховребов А.М., Воронов В.В. Импульсное лазерное напыление квантоворазмерных пленок висмута. Поверхность. Рентгеновские, синхротронные и нейтронные исследования №6, с.79-83 (2000)

17. Головашкин А.И., Жерихин А.Н., Жерихина Л.Н., Кулешова Г.В., Цховребов А.М. Аномалии фотоэмиссионных спектров квантоворазмерных объектов и модель сверхсильного электрон-фононного взаимодействия. Краткие Сообщения по физике. №12 (2004)

18. Головашкин А.И., Жерихин А.Н., Жерихина Л.Н., Кулешова Г.В., Цховребов А.М. Интерференционные эффекты в двумерных системах на основе ультратонких висмутовых пленок. Поверхность. Рентгеновские, синхротронные и нейтронные исследования №10, с.3-15 (2005)

19. Квантовая электроника А.И.Головашкин, Г.Н.Измайлов, Л.Н.Жерихина, Г.В.Кулешова, А.М.Цховребов, «Магнитный калориметр со SQUIDoм для обнаружения слабых излучений и регистрации сверхмалого энерговыделения». Квантовая электроника том 36, №12, 1168-1175 (2006)

20. Golovashkin A.I., Izmaïlov G.N., Kuleshova G.V., Khánh T.Q., Tskhovrebov A.M., Zherikhina L.N. Magnetic calorimeter for registration of small energy release. Europe Physics Journal B, Volume 58, Number 3, 243-249 (2007)

21. Дирочка А.И., Филачёв А.М. Горизонты фотоэлектроники. Прикладная физика № 2, 37-42 (2007)

Подписано в печать 24.12.2013 г. <u>Формат 60х84/16. Заказ №75. Тираж 140 экз. П.л 1.</u> Отпечатано в РИИС ФИАН с оригинал-макета заказчика 119991 Москва, Ленинский проспект, 53. Тел. 499 783 3640