

Москва 2014

ИССЛЕДОВАНИЕ КРИТИЧЕСКОЙ ЭНЕРГИИ АНОМАЛЬНЫХ ЭЛЕКТРОМАГНИТНЫХ ЛИВНЕЙ

В.А. Басков

Аннотация

Представлены результаты экспериментальных исследований критической энергии аномальных электромагнитных ливней от электронов в десятки Γ эB, регистрируемых электромагнитным спектрометром. Обнаружено увеличение критической энергии ε_c развития аномального ливня в спектрометре в ~2 раза по сравнению с аналогичной величиной в случае развития стандартного ливня, исследовано её поведение от ориентации, толщины и температуры кристалла, формирующего аномальные ливни, энергии электронов.

THE INVESTIGATION OF THE CRITICAL ENERGY OF ABNORMAL ELECTROMAGNETIC SHOWERS

V.A. Baskov

Abstract

The experimental researches of the critical energy of abnormal electromagnetic showers from electrons to tens *GeV* registered by an electromagnetic spectrometer are presented. The increase of the critical energy ε_c developments of an abnormal shower in a spectrometer in ~2 times in comparison with similar size in case of development of a standard shower is revealed, its behavior from orientation, thickness and temperatures of the crystal forming abnormal showers, energy electrons is investigated.

baskov@x4u.lebedev.ru

Отличия отклика спектрометра, регистрирующего *аномальные* электромагнитные ливни, относительно отклика спектрометра регистрирующего *стандартные* электромагнитные ливни распространяется практически на все параметры отклика, в том числе и на величину *критической энергии* ε_c , определяющей начало затухания ливня в спектрометре [1-3].

Критической энергией, по определению, называется энергия электронов *E*, при которой величина удельных радиационных потерь становится сравнимой с величиной удельных ионизационных потерь: $E = \varepsilon_c = (dE/dx)_{pag} \approx (dE/dx)_{ион}$. *Критическая* энергия ε_c зависит от типа вещества. Для оценки ε_c , обычно используют приближенную формулу, которая справедлива с погрешностью не более 10% для веществ с атомным номером $13 \le Z \le 92$:

$$\varepsilon_{\rm c} \approx 550/Z,$$
 (1)

где Z – заряд атомов среды, ε_{c} – энергия в MэB [4-6].

Данная работа представляет экспериментальные результаты исследования *критической* энергии ε_c черенковского спектрометра, регистрирующего *аномальные* электромагнитные ливни, выходящие из ориентированных кристаллов.

В исследованиях были использованы кристаллы толщиной много меньше толщины спектрометра, применяемого для регистрации ливней $t_{cryst}(0.28X_0 \div 2.4X_0) \ll t_{spectr}(25X_0)$ (t_{cryst} и t_{spectr} - толщины кристаллов и спектрометра, соответственно) [7], поэтому исследовалась *критическая* энергия ливня, развивающегося в основном в спектрометре.

Положение максимума развития электромагнитного ливня в спектрометре без кристалла от энергии электронов *E* описывается известным выражением [4-6]:

$$t_{\max} = \ln(E/\varepsilon_c) - c, \qquad (2)$$

где E - энергия электронов в MэB, ε_c – *критическая* энергия черенковского стекла; c = 0.5.

3

Положение максимума развития электромагнитного ливня в спектрометре с конвертером из разориентированного (*аморфном*) кристаллического конвертора от энергии электронов *Е* представляется выражением [*3*]:

$$t_{\rm max} = \ln(E/\varepsilon_{\rm c}) - c - t_{\rm cryst}.$$
 (3)

Зависимость 3 смещена относительно зависимости 2 на величину толщины разориентированного кристалла (t_{cryst}) перед спектрометром.

Ориентация кристалла приводит к увеличению эффективной толщины кристалла t_{eff} перед спектрометром (t_{eff} – эффективная толщина кристалла, на которой происходит наиболее эффективное взаимодействие частиц с кристаллом) и смещению зависимости 2 на соответствующую величину [3]:

$$t_{\rm max} = \ln(E/E_{\rm c}) - c - t_{\rm eff},\tag{4}$$

где $t_{eff} = t_{cryst} + \Delta t$, а $\Delta t = t_{max d} - t_{max o}$ является "*добавкой*" к толщине кристалла t_{cryst} за счет эффекта ориентации ($t_{max d}$ и $t_{max o}$ - положение максимума каскадной кривой при разориентированном и ориентированном кристалле, соответственно).

Увеличение эффективной толщины кристалла *t*_{eff} при его ориентации не приводит к *реальному* изменению толщины кристалла, что может означать изменение *критической* энергии при развитии *аномального* ливня в кристалле.

Действительно, развитие аномального ливня в кристалле идёт в значительной степени по когерентным механизмам излучения γ -квантов электронами (позитронами) и рождения e^+e^- пар фотонами. В результате, в аномальном ливне происходит увеличение энерговыделения по сравнению с энерговыделением в *стандартном* ливне. Дальнейшее развитие аномального ливня в спектрометре продолжает частично идти по когерентным механизмам, действия которых простираются на значительную толщину спектрометра и приводят к изменению его отклика. В характере отклика спектрометра появляются ориентационные и температурные зависимости, происходит сдвижка максимума каскадной кривой развития ливня и т. д., в том числе меняется *критическая* энергия [1,2,7].

Таким образом, зависимость 3 модифицируется:

$$t_{\rm max} = \ln(E/\varepsilon'_{\rm c}) - c - t_{\rm cryst}, \tag{5}$$

где є '_с – *модифицированная критическая* энергия.

У *модифицированной критической* энергии є[°]_с к зависимости от типа вещества добавляются зависимости от энергии электронов, ориентации, температуры и толщины кристалла.

Приравнивая выражения 4 и 5, получаем зависимость ε'_{c} от "*добавочной*" толщины кристалла за счет степени ориентированности вдоль соответствующей оси или плоскости, так как $\Delta t = \Delta t(\theta) \ (\theta - \text{угол ориентации кристалла относи$ тельно кристаллографической оси или плоскости):

$$\varepsilon'_{\rm c} = \varepsilon_{\rm c} \cdot \exp(\Delta t). \tag{6}$$

Зависимость ε'_{c} от энергии электронов *E* для кристаллического вольфрамового конвертора толщиной *1 мм*, ориентированного вдоль оси <*111*> и температуры *T* = 293*K*, представлена на рис. *1*. Видно, что с увеличением энергии электронов *критическая* энергия увеличивается с табличной величины *15 МэВ* при энергии электронов близкой к нулю [8] до ~25 МэВ при энергии электронов около *30 ГэВ*. Увеличение составляет ~*1.7* раза.

Зависимость ε'_{c} от угла ориентации θ относительно кристаллографической оси <111> для того же кристалла при температурах $T_1 = 293K$ и $T_2 = 77K$ и энергии электронов 28 ГэВ представлена на рис. 2. Ширины ориентационных зависимостей составили $\Delta \theta_1 = \Delta \theta_{293K} = 7.5$ мрад и $\Delta \theta_2 = \Delta \theta_{77K} = 5$ мрад, соответственно. Рисунок также показывает увеличение величины ε'_{c} при уменьшении температуры кристалла с $\varepsilon'_{c} \approx 25$ МэВ (T_1) до $\varepsilon'_{c} \approx 35$ МэВ (T_2).

Зависимость ε'_{c} от температуры *T* для разных углов ориентации θ кристалла представлена на рис. *3*. Для всех исследуемых углов ε'_{c} возрастает при уменьшении температуры.

Зависимость ε'_{c} от толщины кристалла t_{cryst} при энергии электронов 26 ГэВ и температуры $T_1 = 293K$ представлена на рис. 4. Если предположить, что в пределах исследуемых толщин кристаллов зависимость имеет пропорциональный характер, то:

$$\varepsilon'_{\rm c} = at + b, \tag{7}$$

при *a* = *18*, *b* = *15*.

Можно определить зависимость ε'_{c} от радиационной длины ориентированного кристалла X'_{0} . Радиационная длина ориентированного кристалла определяется как $X'_{0} = X_{0}(t_{cryst}/t_{eff}) = X_{0}(t_{cryst}/(t_{cryst} + \Delta t))$, то есть $\Delta t = (X_{0} - X'_{0}) \cdot t_{cryst}/X'_{0}$. Отсюда:

$$\varepsilon'_{\rm c} = \varepsilon_{\rm c} \cdot \exp((X_0 - X_0) \cdot t_{\rm cryst} / X_0). \tag{8}$$

Поведение ε'_{c} от X'_{0} , фактически от Δt , представлено на рис. 1.

Надо отметить, что возрастание *критической* энергии ε'_{c} аномальных электромагнитных ливней с увеличением энергии электронов должно происходить до тех пор, пока энергия не достигнет величины, при которой отношение радиационной длины разориентированного кристалла X_0 к радиационной длине ориентированного кристалла X'_0 [1]

$$X_0/X_0 = const. \tag{9}$$

В этом случае, X²₀ достигает минимальной величины, а є с максимальной и при дальнейшем увеличении энергии электронов не меняется.

Таким образом, при регистрации *аномальных* электромагнитных ливней от электронов с энергиями в десятки ГэВ критическая энергия спектрометра, регистрирующего ливни, возрастает. В пределах исследуемых толщин кристаллов зависимость критической энергии от энергии электронов экспоненциальная, от толщины кристаллического конвертора перед спектрометром пропорциональная. Наблюдается возрастание критической энергии при уменьшении угла ориентации кристаллического конвертора и уменьшении его температуры.

ЛИТЕРАТУРА

- Байер В.Н., Катков В.М., Страховенко В.М., Электромагнитные процессы при высокой энергии в ориентированных монокристаллах, издательство "Наука" СО АН СССР, г. Новосибирск, 1989.
- 2. *Ахиезер А.И., Шульга Н.Ф.*, Электродинамика высоких энергий в веществе, издательство "*Наука*", г. Москва, *1993*.
- 3. *Басков В.А.*, Препринт *ФИАН*, 2013, №9, Москва.
- 4. *Калиновский А.Н., Мохов Н.В., Никитин Ю.П.*, Прохождение частиц высоких энергий через вещество, Энергоатомиздат, г. Москва, 1985, С.107.
- 5. *Barnett B.M., Carone C.D., Groom D.E. at al.*, Particle Physics (*Booklet*), American Institute of Physics, Available from *LBNL* and *CERN*, July 1996, P. 172.
- Словинский Б., Физика элементарных частиц и атомного ядра (ФЭЧАЯ), Дубна, 1994, т.25, выпуск 2, С. 417.
- 7. Басков В.А., Краткие сообщения по физике ФИАН, №10, 2012, С. 8.
- 8. *Говорков Б.Б.*, Труды Международной конференции по аппаратуре в физике высоких энергий, Дубна, *1970*, *8-12* сентября, С. *389*.
- 9. Басков В.А., Краткие сообщения по физике ФИАН, №8, 2013, С. 42.

Рис. 1 Зависимость критической энергии *ε*_с черенковского спектрометра от энергии электронов *E* (кристаллический вольфрамовый конвертор толщиной *1 мм*, ориентация вдоль оси <*111*>, температура *T* = 293*K*;
о – табличное значение [8], ● – эксперимент, ■ – оценка [3,9])

Рис. 2 Зависимость критической энергии ε_c черенковского спектрометра от угла ориентации θ кристаллического вольфрамового конвертора толщиной *1 мм* относительно оси <*111*> (*E* = 28 ГэВ; 1 – T_1 = 293K, 2 – T_2 =77K).

Рис. 3 Зависимость критической энергии ε_c черенковского спектрометра от температуры *T* кристаллического вольфрамового конвертора при различных углах ориентации θ относительно оси <111> (толщина конвертора 1 мм; $E = 28 \ \Gamma \Rightarrow B$; $1 - \theta = 45 \ mpad$; $2 - \theta = 8 \ mpad$; $3 - \theta = 4 \ mpad$; $4 - \theta = 0 \ mpad$).

Рис. 4 Зависимость критической энергии ε_c черенковского спектрометра от толщины t_{cryst} ориентированных относительно оси <111> кристаллов вольфрама при температуре T = 293K (○ – табличное значение [8],
■ – оценка [3,9], ● – эксперимент).

Подписано в печать 13.01.2014 г. <u>Формат 60х84/16. Заказ № 3. Тираж 140 экз. П.л 0,75.</u> Отпечатано в РИИС ФИАН с оригинал-макета заказчика 119991 Москва, Ленинский проспект, 53. Тел. 499 783 3640