

ПРЕПРИНТ

В. А. БАСКОВ

9

ОЦЕНКА ПАРАМЕТРОВ КАСКАДНОЙ КРИВОЙ РАЗВИТИЯ ЭЛЕКТРОМАГНИТНОГО ЛИВНЯ В СПЕКТРОМЕТРЕ С КОНВЕРТЕРОМ ИЗ ОРИЕНТИРОВАННОГО КРИСТАЛЛА

Москва 2012

ОЦЕНКА ПАРАМЕТРОВ КАСКАДНОЙ КРИВОЙ РАЗВИТИЯ ЭЛЕКТРОМАГНИТНОГО ЛИВНЯ В СПЕКТРОМЕТРЕ С КОНВЕРТЕРОМ ИЗ ОРИЕНТИРОВАННОГО КРИСТАЛЛА

В.А. Басков

Аннотация

На основе экспериментальных результатов развития электромагнитных ливней от электронов 26 ГэВ в разориентированных и ориентированных вдоль оси <111> кристаллах вольфрама 2.7, 5.8 и 8.4 мм и далее в составном черенковском ливневом спектрометре сделаны оценки параметров каскадной кривой развития ливней в спектрометре с конвертером из 1 мм кристалла вольфрама. На основе энергетической зависимости развития ливня в счетчиках составного черенковского ливневого спектрометра с конвертером из ориентированного 1 мм кристалла вольфрама сделаны оценки развития ливня в 8, 9 и 10 счетчиках спектрометра при энергии электронов 31 ГэВ.

ESTIMATION OF PARAMETERS OF THE CASCADE CURVE OF DEVELOPMENT OF THE ELECTROMAGNETIC SHOVER IN THE SPECTROMETER WITH THE CONVERTER FROM THE ALIGNED CRYSTAL

B.A. Baskov

Abstract

On the basis of experimental results of development of electromagnetic showers from electrons 26 GeV in non aligned and aligned along an <111> axis of 2.7, 5.8 and 8.4 mm tungsten crystals and further in compound cherenkov shower spectrometer are made estimations of parameters of a cascade curve of development of showers in a spectrometer with the converter from 1 mm of a tungsten crystal. On the basis of energy dependence of development of a shower in counters compound cherenkov shower spectrometer with the converter from the aligned 1 mm tungsten crystal of estimations of development of a shower in 8, 9 and 10 counters of a spectrometer are made at energy electrons of 31 GeV.

baskov@x4u.lebedev.ru

В рамках программы изучения эффектов квантовой электродинамики в сильных полях ориентированных кристаллов в *Физическом институте им. П.Н. Лебедева РАН* были проведены экспериментальные исследования развития электромагнитных ливней в ориентированных кристаллах (*"аномальных"* ливней) от электронов с энергией 28 и 31 ГэВ. Был использован кристалл вольфрама толщиной 1 мм [1,2,5-8]. В последующих исследованиях ливневых процессов в ориентированных кристаллах от электронов с энергией 26 ГэВ были использованы толстые кристаллы вольфрама толщинами 2.7, 5.8 и 8.4 мм [3,8]. Для построения энергетической зависимости отклика электромагнитного спектрометра, регистрирующего *"аномальные"* ливни, необходимо иметь развитие ливней для нескольких энергий электронов в ориентированном конверторе одной толщины.

В данной работе на основе экспериментальных результатов развития ливней в ориентированных кристаллах вольфрама 2.7, 5.8 и 8.4 мм сделана оценка развития ливня в 1 мм кристалле и построена каскадная кривая развития ливня в спектрометре для энергии электронов 26 ГэВ.

Исследования ливневых процессов в кристаллах были выполнены на установке "*Каскад*" на электронном канале 2В ускорителя ИФВЭ [9].

Для регистрации электромагнитных ливней использовался составной черенковский ливневый спектрометр (*СЧЛС*), находящийся в 65 см за конвертером. *СЧЛС* состоял из 10 независимых светоизолированных счетчиков (радиаторов) из свинцового стекла $T\Phi$ -1. Счетчики имели одинаковый размер 100×100 MM^2 и толщину 1X₀ [10].

В качестве конверторов использовались кристаллы вольфрама ($X_0 = 3.5$ *мм*, X_0 - радиационная длина), находящиеся при комнатной температуре $T = 293^{\circ}K$. Ориентация кристаллов осуществлялась вдоль оси <111>, кристалл считался разориентированным (аморфным) при $\Theta = 20 \div 30$ *мрад*. Мозаичность кристаллов составляла $\Delta \Theta_{\rm W} \approx 1$ *мрад*. В эксперименте использовался пучки электронов с энергиями E = 26, 28 и 31 ГэВ с расходимостью $|\upsilon| \le 0.1$ мрад по основанию [3,9].

На рис. *1* приведены дифференциальные (каскадные) кривые развития электромагнитных ливней от электронов с энергией *26 ГэВ*, выходящие из разориентированных (зависимости *1*) и ориентированных (зависимости *2*) кристаллов вольфрама и далее продолжающие развиваться в *СЧЛС*. На рисунках по оси абсцисс отложена толщина спектрометра *СЧЛС*, по оси ординат отложена средняя энергия ливня, оставленная им в каждом счетчике спектрометра. На рис. *1* приведена также калибровочная кривая, когда перед *СЧЛС* отсутствует кристаллический конвертор ($t_W = 0$, зависимость *3*). В этом случае начало развития ливня приходиться на первый счетчик *СЧЛС*. Статистические ошибки на рис. *1* не приведены, поскольку составляли менее *1%* [*3*].

На рис. 2 представлены те же каскадные кривые в терминах зависимости энерговыделения в каждом счетчике *СЧЛС* от толщины разориентированного (*a*) и ориентированного кристалла (б). Анализ кривых рис. 2 даёт возможность по зависимости энерговыделения в каждом счетчике *СЧЛС* получить значения энерговыделения в счетчиках *СЧЛС* для толщин кристаллов в диапазоне $t_W \leq 3X_0$.

Для построения оценочных каскадных кривых необходимо дополнительно знать зависимости положения максимума каскадной кривой и величину энерговыделения ливня в максимуме каскадной кривой от толщины разориентированных и ориентированных кристаллов. Указанные зависимости, полученные на основе данных рис. *1*, представлены на рис. *3*.

Выделяя на рис. 2 и 3 точки, соответствующие некоторой заданной толщине кристалла вплоть до $t_W \leq 3X_0$, можно получить все параметры (энерговыделение, положение максимума каскадной кривой и энерговыделение в максимуме каскадной кривой) развития ливня в *СЧЛС* при энергии электронов 26 ГэВ и, в частности, для кристалла толщиной *1мм* ($t_W = 0.28X_0$). Штрихпунктирные линии на рис. 2 и 3, соответствуют толщине 1 *мм*.

На основе энергетической зависимости развития ливня в спектрометре с конвертером из ориентированного *1 мм* кристалла вольфрама были сделаны

4

оценки развития ливня в продольном направлении в 8, 9 и 10 счетчиках СЧЛС при энергии электронов 31 ГэВ.

Исследование электромагнитных ливней в ориентированном кристалле вольфрама при энергии электронов 31 ГэВ осуществлялось СЧЛС, состоявшего из 7 счетчиков или общей толщиной $t_{CЧЛС} = 7X_0$ [7]. Для регистрации значительной части каскадной кривой, необходимо иметь не менее 9-10 счетчиков СЧЛС, чтобы: *a*) надежно регистрировать положение максимума каскадной кривой и энерговыделение в максимуме каскадной кривой; δ) определять тенденцию развития ливня за максимумом каскадной кривой в зависимости от параметров конвертора перед СЧЛС.

Значения энерговыделения для 8, 9 и 10 счетчиков СЧЛС как для разориентированного, так и для ориентированного кристалла можно получить, построив энергетическую зависимость энерговыделения в каждом счетчике СЧЛС для энергий электронов 26, 28 и 31 ГэВ. Значения энерговыделения для недостающих счетчиков получаются экстраполяцией значений энерговыделения для энергий электронов 26 и 28 ГэВ в область энергии 31 ГэВ (рис. 4). Экстраполяцию можно осуществить, используя простое предположение поведения кривых $\Delta E_i = a_i E^b$, где ΔE_i – энерговыделение в счетчиках СЧЛС i = 8, 9 и 10; E – энергия электронов; a и b – подгоночные параметры, определяемые при энергиях 26 и 28 ГэВ.

Таким образом, на основе экспериментальных результатов развития электромагнитных ливней от электронов 26, 28 и 31 ГэВ в разориентированных и ориентированных вдоль оси <111> кристаллах вольфрама 1, 2.7, 5.8 и 8.4 мм и далее в СЧЛС сделаны оценки параметров каскадной кривой развития ливней в спектрометре с конвертером из 1 мм кристалла вольфрама при энергии электронов 26 ГэВ и оценки развития ливня в 8, 9 и 10 счетчиках спектрометра при энергии электронов 31 ГэВ (рис. 5).

ЛИТЕРАТУРА

- 1. Басков В.А., Ганенко В.Б., Жебровский Ю.В. и др., Письма в ЖЭТФ, № 57, С. 282 (1993).
- 2. Басков В.А., Ким В.В., Лучков Б.И., Тугаенко В.Ю., Препринт ФИАН № 35, Москва (2011).
- 3. Басков В.А., Препринт ФИАН № 36, Москва (2011).
- 4. Baskov V.A., Khablo V.A., Kim V.V. et al., Nucl. Instr. and Meth. in Phys. Res., **V. B145**, 92 (1998).
- 5. Басков В.А., Ганенко В.Б., Жебровский Ю.В. и др., Тезисы докладов XIX Всесоюзного совещания по физике взаимодействия заряженных частиц с кристаллами, МГУ, 1989, С. 84-86.
- 6. Байер В.Н., Басков В.А., Ганенко В.Б. и др, ЖТЭФ, **т.101**, 1351 (1992).
- Басков В.А., Ким В.В., Хабло В.А, Сергиенко В.И., Сообщение на рабочем совещание по исследованию эффектов, возникающих при взаимодействии электронов и фотонов с ориентированными кристаллами, ОФВЭ ФИАН, Троицк (1987).
- 8. Басков В.А., Ким В.В., Хабло В.А., ПТЭ, №4, С. 13 (2010).
- 9. Басков В.А., Ким В.В., Сергиенко В.А., Хабло В.А., ПТЭ, 1990, №5, 58.
- 10. Басков В.А., Белоусов А.С., Ким В.В. и др., ПТЭ, 2011, №5, 66.

Рис. 1 Дифференциальные (каскадные) кривые развития электромагнитного ливня в *СЧЛС* от электронов с энергией $E = 26 \ \Gamma \Rightarrow B$ при разных толщинах разориентированных (1) и ориентированных (2) кристаллов вольфрама ($<\Delta E > -$ средняя энергия ливня, выделившаяся в каждом счетчике *СЧЛС*; t_W и $t_{CЧЛC}$ – толщины кристаллов и *СЧЛС*, соответственно; толщины кристаллов указаны справа от кривых).

<∆Е>, ГэВ

Рис. 2 Зависимость энерговыделения в счетчиках *СЧЛС* от толщины вольфрамового кристаллического конвертора (энергия электронов E = 26 $\Gamma \ni B$; конвертор разориентирован (*a*) и ориентирован вдоль оси <*111*> (*б*); < ΔE > – средняя энергия ливня, выделившаяся в счетчике *СЧЛС*; $t_{\rm W}$ – толщина конвертора; номера счетчиков *СЧЛС* указаны справа от кривых).

Рис. 3 Зависимость положения максимума каскадной кривой (t_{max}) (1, 3) и среднего энерговыделения в максимуме каскадной кривой $(<\Delta E_{max}>)$ (2, 4) от толщины разориентированного (аморфного) кристалла (t_W) (средняя энергия электронов в пучке – $E = 26 \Gamma \Im B$; \circ – кристалл перед *СЧЛС* отсутствует); $T_W = 293^\circ K$; 1 и 2 – кристалл разориентирован $(\Theta \ge 20 \text{ мраd})$; 3 и 4 – кристалл ориентирован вдоль оси $<111>(\Theta = 0)$).

Рис. 4 Зависимость энерговыделения в счетчиках *СЧЛС* от энергии электронов $(<\Delta E > -$ средняя энергия ливня, выделившаяся в каждом счетчике *СЧЛС*; a – кристалл разориентирован ($\Theta \ge 20$ мрад); δ – кристалл ориентирован вдоль оси $<111>(\Theta=0)$; $T_{\rm W} = 293^{\circ}K$; номера счетчиков *СЧЛС* (по пучку) показаны справа от кривых; • - экспериментально измеренные точки; • - оценка; - - - экстраполяция).

<∆Е>, ГэВ

Рис. 5 Каскадные кривые развития электромагнитного ливня в СЧЛС от электронов с энергией 26, 28 и 31 ГэВ при разориентированном (Θ≥ 20 мрад) и ориентированном вдоль оси <111> (Θ= 0) кристаллическом вольфрамовом конвертором (• – экспериментальные измерения; ■ - оценка; энергия электронов на рисунке показана слева от кривых).

Подписано в печать 15.05.2012 г. <u>Формат 60х84/16. Заказ №33. Тираж 140 экз. П.л 1.</u> Отпечатано в РИИС ФИАН с оригинал-макета заказчика 119991 Москва, Ленинский проспект, 53. Тел. 499 783 3640