РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ ИМ. П. Н. ЛЕБЕДЕВА

Отделение оптики

Препринт №

А.А.Кузнецов.

Оптимизация метода Теплера с двухсекционным фотодетектором.

•

МОСКВА 2011

АННОТАЦИЯ

А.А.Кузнецов

Оптимизация метода Теплера с двухсекционным фотодетектором.

Рассмотрен вопрос чувствительности метода Теплера с двухсекционным фотодетектором и обсуждены пути ее повышения за счет оптимизации оптической схемы. Установлены величина максимальной чувствительности экспериментальной установки и условия, при которых она достигается.

Определены требования к точности расположения элементов установки и ограничения на диаметр зондирующего пучка, связанные с шириной исследуемых оптических неоднородностей и размером приемной площадки детектора.

Полученные результаты позволяют выбирать параметры экспериментальной установки, которые обеспечивают максимальную чувствительность измерений, приемлемые требования к точности установки элементов и линейный режим регистрации. Оптимизация метода Теплера с двухсекционным фотодетектором.

А.А.Кузнецов.

Физический институт им.П.Н.Лебедева Российской Академии Наук, 119991 г. Москва, Ленинский просп., д. 53, e-mail: aleksey_kuzn@mail.ru

Введение.

Теневые методы широко применяются в различных областях при исследовании оптических неоднородностей в прозрачных преломляющих средах [1-5]. Однако в некоторых случаях, например, при изучении медленных уединенных упругих волн, возникающих при импульсном воздействии твердое тело [6,7], возмущение показателя преломления невелико, и остро стоит вопрос о повышении чувствительности измерений.

В данной работе проводится количественное определение чувствительности метода Теплера с двухсекционным фотодетектором и обсуждаются пути ее повышения за счет оптимизации оптической схемы. Рассматриваются требования к точности параметров установки и ограничения на диаметр зондирующего пучка.

1. Определение чувствительности двухсекционного фотодетектора. 1.1. Схема экспериментальной установки.

Схема экспериментальной установки для исследования оптических неоднородностей изображена на Рис. 1. Исследуются образцы из прозрачных преломляющих материалов в форме параллелепипеда длиной L с прямоугольным поперечным сечением и полированными боковыми поверхностями. На торец образца фокусируется возбуждающий импульс CO₂ лазера (энергия импульса ~ 1 Дж, длительность ~ 0,3 сек, передний фронт ~ 0,03 сек, длина волны 10,6 мкм).

На расстоянии L_{det} от этого торца параллелепипед пересекается зондирующим лучом He-Ne лазера (длина волны $\lambda = 0,63$ мкм, мощность излучения ~ 5 мВт). После прохождения образца излучение зондирующего лазера попадает на двухсекционный фотодетектор ФД 19кк, расположенный на расстоянии z.

Разностный сигнал с двух секций детектора усиливается и поступает на систему регистрации.

Рис.1. Схема экспериментальной установки.

При оптически однородном образце лазерный пучок настроен симметрично на обе секции детектора, что дает нулевой разностный сигнал. При возникновении в области зондирования оптической неоднородности вдоль образца $(\partial n/\partial l \neq 0)$ лазерный пучок отклоняется в направлении градиента показателя преломления, а пятно на детекторе смещается на расстояние *x*, пропорциональное его модулю и расстоянию *z* [8]

$$x = \alpha \cdot z = (\partial n/\partial l) \cdot d \cdot z \tag{1}$$

где α – угол отклонения пучка в образце, d – поперечный размер образца вдоль зондирующего пучка.

1.2. Приближение пучка с однородной интенсивностью.

Рассмотрим пучок с равномерным распределением интенсивности I_u и диаметромг $2R_u$. Для него величина разностного сигнала прямо пропорциональна разности площадей пятна на секциях детектора $U = CI_u(S_2 - S_1)$, где C – коэф-

фициент преобразования детектора с усилителем. Выражения для *S*₁ и *S*₂ при смещении пучка относительно центра детектора можно получить из геометрических соображений

$$S_{1} = R_{u}^{2} \arccos(x/R_{u}) - x\sqrt{R_{u}^{2} - x^{2}}$$
⁽²⁾

$$S_{2} = \pi R^{2} - S_{1} = \pi R_{u}^{2} - R_{u}^{2} \arccos(x/R_{u}) + x\sqrt{R_{u}^{2} - x^{2}}$$
(3)

где $|x| \leq R_u$. Отсюда разность площадей $\Delta S = (S_2 - S_1)$ будет равна

$$\Delta S = R_u^2 \left[\pi - 2 \arccos(x/R_u) + 2(x/R_u) \sqrt{1 - (x/R_u)^2} \right]$$
(4)

График зависимости разностного сигнала *U* от величины относительного смещения пятна на детекторе x/R_u показан на Рис. 2. На начальном участке $(|x| < 0.5R_u)$ наблюдается линейный рост со скоростью $dU/dx = 4CI_uR_u$, затем скорость роста монотонно падает, и при $|x| = R_u$ функция *U* достигает максимального значения равного $U_{\text{max}} = CP$, где P – мощность излучения, связанная с параметрами однородного пучка выражением $P = I_u \pi R_u^2$. Область максимального сигнала находится в пределах $R_u < |x| < A - R_u$, где A – ширина одной секции детектора.

Рис. 2. Зависимость разностного сигнала от относительного смещения однородного пучка.

Из анализа функции U(x) следует, что при увеличении размера пятна R_u и фиксированной мощности P, скорость роста на линейном участке падает, а его ширина возрастает. Область максимального сигнала уменьшается (или вообще исчезает при $R_u > 0.5A$), а его величина не изменяется.

При повышении мощности излучения P и постоянной ширине пучка R_u , скорость роста на линейном участке и величина максимального сигнала $U_{\rm max}$ увеличиваются, а размеры линейной области и области максимального сигнала не изменяются.

1.3. Гауссов пучок.

При использовании шлирен-метода в качестве зондирующего источника света целесообразно применять лазерные генераторы с мощным и узконаправленным выходным излучением. Структура лазерного излучения во многих случаях практически совпадает с Гауссовым пучком, имеющим сферические волновые фронты и поперечное распределение амплитуды, описываемое функцией [9]

$$E(r) = E_0 \exp\{-(r/w)^2\}$$
(5)

Расстояние w, на котором амплитуда спадает в e раз по сравнению с ее значением на оси E_0 , называется параметром ширины пучка [9]. Более 90 % всей мощности сосредоточено в круге диаметром 2,2 w, а более 95 % мощности – в круге диаметром 2,5 w.

Для определения чувствительности двухсекционного фотодетектора к смещению Гауссова пучка представим его в виде суперпозиции n (n >> 1) однородных пучков с малой интенсивностью ($\Delta I << I_0 = E_0^2$) и различными диаметрами $2R_i$ (см. Рис. 3). При этом значение R_i будет равно $R_i = w \cdot \sqrt{-0.5 \ln(1 - (i - 0.5)/n)}$ (i = 1, 2, ..., n), а величина $\Delta I = I_0/n$.

Воспользуемся результатами предыдущего раздела. Тогда зависимость разностного сигнала U(x) от величины относительного смещения пятна на детекторе будет равна

$$U(x) = \sum_{i=1}^{m} C\Delta I \cdot \pi R_{i}^{2} + \sum_{i=m+1}^{n} C\Delta I \cdot R_{i}^{2} \bigg[\pi - 2 \arccos(x/R_{i}) + 2(x/R_{i})\sqrt{1 - (x/R_{i})^{2}} \bigg]$$
(6)

Рис. 3. Представление Гауссова пучка в виде суперпозиции однородных пучков.

где, m – определяется из условия $R_m \le x < R_{m+1}$. Переходя к пределу, учтем, что в соответствии с (5) $r(I) = w \cdot \sqrt{0.5 \ln(I_0/I)}$. Тогда первую сумму $\Sigma 1$ из выражения (6) можно представить в виде

$$\Sigma 1 = C \int_{I(x)}^{I_0} 0.5\pi w^2 \ln(I_0/I) dI = 0.5\pi w^2 I_0 C \left\{ 1 - \left[1 + 2x^2/w^2 \right] \cdot e^{-2x^2/w^2} \right\}$$
(7)

Вторая сумма Σ2 из выражения (6) будет иметь следующий вид

$$\Sigma 2 = C \int_{0}^{I(x)} \left\{ 0.5w^{2} \ln(I_{0}/I) \left[\pi - 2 \arccos\left(x/w\sqrt{0.5\ln(I_{0}/I)}\right) \right] + 2x\sqrt{0.5w^{2} \ln(I_{0}/I) - x^{2}} \right\} dI = C \int_{0}^{I(x)} \left\{ -w^{2} \ln(I_{0}/I) \cdot \arccos\left(x/w\sqrt{0.5\ln(I_{0}/I)}\right) + 2x\sqrt{0.5w^{2} \ln(I_{0}/I) - x^{2}} \right\} dI + 0.5\pi w^{2} I_{0} C \left(1 + 2x^{2}/w^{2}\right) \cdot e^{-2x^{2}/w^{2}}$$

$$(8)$$

В результате величина разностного сигнала $U(x) = \Sigma 1 + \Sigma 2$ будет равна

$$U(x) = C \int_{0}^{I(x)} \left\{ w^2 \ln(I/I_0) \arccos(x/w\sqrt{0.5\ln(I_0/I)}) + x\sqrt{2w^2\ln(I_0/I) - 4x^2} \right\} dI + 0.5\pi w^2 I_0 C \quad (9)$$

На Рис. 4 показан график зависимости разностного сигнала для Гауссова пучка от величины относительного смещения x/w (Кривая 1), полученной из выражений (6) – (9). Кривая 1 монотонно возрастает, достигая максимального значения при $x/w \sim 1,2$. Как и для однородных пучков, при изменении мощности или поперечного размера зондирующего излучения характер зависимости остается прежним, меняется лишь масштаб вдоль одной из осей координат. При изменении *w* вдоль оси абсцисс, *P* – ординат.

На Рис. 4 для сравнения приведены данные для однородных пучков с такой же мощностью и различной шириной (Кривая $2 - R_u = 0.5w$; $3 - R_u = 0.8w$; $4 - R_u = w$). Из рисунка видно, что зависимость для Гауссова пучка в целом сильнее отклоняется от линейной, но на участке |x/w| < 0.4 она практически совпадает с кривой для однородного пучка с $R_u = 0.8w$ (Кривая 3) и имеет постоянную скорость роста $dU/dx \approx 5U_{max}/\pi w$. А в области |x/w| < 0.6 ее можно неплохо аппроксимировать прямой линией с наклоном $dU/dx \approx 4.5U_{max}/\pi w$ (на рисунке не указана).

С учетом выражения (1) чувствительность сигнала к отклонению зондирующего пучка пропорциональна отношению расстояния между детектором и образцом *z* к параметру ширины Гауссова пучка на детекторе *w* и составляет $dU/d\alpha \approx 1.5CPz/w = 1.5U_{max}z/w$.

Рис. 4. Зависимость разностного сигнала для Гауссова (Кривая 1) и однородных (2-4) пучков одинаковой мощности от величины относительного смещения. Кривая 2 – полуширина однородного пучка $R_u = 0,5 \cdot w; 3 - 0,8 \cdot w; 4 - w$.

2. Оптимизация оптической схемы.

Из раздела 1.3 следует, что чувствительность системы обратно пропорциональна отношению параметра ширины Гауссова пучка на детекторе к расстоянию между детектором и образцом. Поэтому для оптимизации установки необходимо, в частности, определить при каком размере пятна и каких параметрах пучка (положение и ширина перетяжки) это отношение минимально.

Прежде всего, рассмотрим вопрос об оптимальном положении перетяжки – самого узкого места пучка. Примем во внимание закон изменения ширины Гауссовых пучков при прохождении участков свободного пространства [9]

$$w(z) = w_0 \sqrt{1 + \left(\frac{\lambda z}{\pi w_0^2}\right)^2}$$
(10)

Здесь z отсчитывается вдоль оси распространения пучка в обе стороны от положения перетяжки, w_0 – параметр ширины перетяжки. Из выражения (10) видно, что в области перетяжки не только минимальная ширина, но и наименьшая расходимость пучка. Отсюда можно заключить что, для максимальной чувствительности установки перетяжка должна быть расположена между приемной площадкой фотодетектора и плоскостью образца. В противном случае отношение ширины пятна на детекторе к расстоянию между детектором и образцом увеличивается либо за счет роста числителя, либо за счет уменьшения знаменателя, либо за счет действия обоих этих факторов одновременно.

Рассмотрим гауссов пучок, проходящий через образец со сходящимся волновым фронтом и параметром ширины w_1 (см. Рис. 5). Для него перетяжка с шириной w_0 будет располагаться на расстоянии z_1 за плоскостью образца

$$z_1 = (\pi w_0 / \lambda) \cdot \sqrt{w_1^2 - w_0^2}$$
(11)

Расстояние между перетяжкой и детектором обозначим z_2 , а параметр ширины пучка на детекторе – w_2 . Тогда с учетом выражений (10) и (11) отношение w_2/z можно записать в следующем виде

$$\frac{w_2}{z} = \frac{w_2}{z_1 + z_2} = \frac{w_0 \sqrt{1 + (\lambda z_2 / \pi w_0^2)^2}}{(\pi w_0 / \lambda) \cdot \sqrt{w_1^2 - w_0^2} + z_2}$$
(12)

9

Рис. 5. Схема зондирующего пучка.

Представим z_2 в виде $z_2 = f \cdot (\pi w_0^2 / \lambda)$, где параметр f показывает, какую часть от конфокального параметра $B = \pi w_0^2 / \lambda$ составляет расстояние между перетяжкой и детектором. Тогда (12) преобразуется к

$$\frac{w_2}{z} = \frac{w_0 \sqrt{1 + f^2}}{\frac{\pi w_0}{\lambda} \left(\sqrt{w_1^2 - w_0^2} + f \cdot w_0 \right)} = \frac{\lambda}{\pi w_1} \cdot K$$
(13)

где
$$K = \frac{\sqrt{1+f^2}}{\sqrt{1-(w_0/w_1)^2} + f \cdot (w_0/w_1)}}$$
 (14)

Функция *К* имеет единственный минимум $K_{\min} = 1$ при значении параметра *f* равном $f_0 = 1/\sqrt{(w_1/w_0)^2 - 1}$ и монотонно возрастает при отклонении от него в любую сторону. Видно, что величина оптимального значения f_0 зависит только от отношения w_0/w_1 . В случае $f = f_0$ выполняются следующие соотношения между основными параметрами пучка

$$w_0 = \frac{f_0}{\sqrt{1 + f_0^2}} \cdot w_1 \tag{15}$$

$$B = \frac{f_0^2}{1 + f_0^2} \cdot \frac{\pi w_1^2}{\lambda}$$
(16)

$$z_{1} = \frac{f_{0}}{1 + f_{0}^{2}} \cdot \frac{\pi w_{1}^{2}}{\lambda} = \frac{B}{f_{0}}$$
(17)

$$z_2 = \frac{f_0^3}{1 + f_0^2} \cdot \frac{\pi w_1^2}{\lambda} = f_0 B$$
(18)

$$z = z_1 + z_2 = f_0 \cdot \frac{\pi w_1^2}{\lambda} \tag{19}$$

В оптимальном случае отношение поперечных размеров пучка на входе и на выходе равняется $w_2/w_1 = f_0$, а отношение расстояний $-z_2/z_1 = f_0^2$.

Из общих соотношений между оптимальными параметрами пучка (15) – (19) можно выделить три частных случая, первый из которых возникает когда по условиям эксперимента параметр ширины w_2 должен быть в несколько раз меньше, чем w_1 ($f_0 \ll 1$). Тогда оптимальной будет схема с перетяжкой вблизи детектора. Ширина перетяжки в этом случае приблизительно совпадает с шириной пучка на детекторе $w_0 \approx w_2$, а расстояние $z \approx z_1 = \pi w_1 w_2 / \lambda \ll \pi w_1^2 / \lambda$.

Если диаметр пучка в образце и на фотодетекторе близки друг к другу $(w_1 \approx w_2)$, то оптимальной будет конфигурация с перетяжкой в середине между образцом и детектором $(f_0 = 1)$. В этом случае параметр ширины перетяжки будет равен $w_0 \approx w_1/\sqrt{2} \approx w_2/\sqrt{2}$, а расстояние $z \approx \pi w_1^2/\lambda \approx \pi w_2^2/\lambda$.

Ну и, наконец, третий случай, когда параметр ширины w_1 в несколько раз меньше w_2 ($f_0 >> 1$). Тогда перетяжка будет располагаться около образца, а ее ширина приблизительно равна ширине пучка в образце $w_0 \approx w_1$. При этом расстояние $z \approx z_2 = \pi w_1 w_2 / \lambda >> \pi w_1^2 / \lambda$.

В случае $f = f_0$ при минимальном значении отношения w_2/z достигается наибольшая чувствительность установки, которая при углах отклонения $\alpha < 0.8 \cdot 10^{-4}/w_1$ рад равняется

$$\frac{dU}{d\alpha} \approx 5CP w_1 / \lambda = 5U_{\max} w_1 / \lambda \approx 8 \cdot 10^3 U_{\max} w_1 \quad (B/paд)$$
(20)

В выражении (20) и в неравенстве для угла отклонения, показывающем область его применимости, параметр ширины *w*₁ выражен в миллиметрах.

3. Требования к точности параметров установки.

Оценим, насколько критична чувствительность установки к точности положения фотодетектора относительно образца z и к вариации входных параметров Гауссова пучка – параметру ширины w_1 и радиусу кривизны волнового фронта R в плоскости образца. Рассмотрим отдельно влияние изменения каждого из этих параметров на величину w_2/z .

3.1. Зависимость оптимальных параметров от ширины пучка в образце

Определим влияние вариации ширины пучка в образце при фиксированном радиусе кривизны R на остальные параметры пучка. Для этого выразим их через величины w_1 и R. Учтем, что радиус кривизны волнового фронта в плоскости образца составляет [9]

$$R = z_1 + \frac{B^2}{z_1} = \frac{\pi w_1^2}{\lambda \cdot \sqrt{(w_1 / w_0)^2 - 1}}$$
(21)

Тогда выражения для параметра ширины перетяжки *w*₀ и расстояния *z*₁ будут иметь следующий вид

$$w_0 = \frac{w_1}{\sqrt{\left(\pi w_1^2 / \lambda R\right)^2 + 1}}$$
(22)

$$z_{1} = \frac{R}{1 + \left(\lambda R / \pi w_{1}^{2}\right)^{2}}$$
(23)

Из выражений (22) и (23) видно, что изменение *w*₁ при фиксированном значении *R* приводит к изменению положения и диаметра перетяжки.

Вследствие этого изменяются также оптимальное расстояние от перетяжки до детектора $z_2 = R \cdot \left[1 + \left(\pi w_1^2 / \lambda R\right)^2\right]^{-1}$ и оптимальный параметр $f_0 = \lambda R / \pi w_1^2$. Кроме того, меняются параметр ширины пучка на фотодетекторе равный $w_2 = \left(\lambda R / \pi w_1\right)$ и чувствительность установки, пропорциональная $\pi w_1 / \lambda$. Однако оптимальное положение детектора, т. е. расстояние между детектором и образцом z, не изменяется, т. к. оно определяется только радиусом кривизны пучка в плоскости образ-

ца $z = z_1 + z_2 = R$.

Таким образом, максимальная чувствительность установки пропорциональна диаметру пучка в образце, в то время как оптимальное расстояние между образцом и детектором z не зависит от параметра ширины w_1 .

3.2. Влияние положения детектора на чувствительность установки.

Поскольку оптимальное расстояние от образца до детектора *z* полностью определяется радиусом кривизны пучка в плоскости образца *R*, две задачи о влиянии изменения каждого из этих параметров на чувствительность установки сводятся к одной – о нахождении зависимости величины w_2/z от разности этих параметров $\Delta z = z - R$.

Для грубой оценки разложим функцию K(f) в окрестности минимума в ряд Тейлора, ограничившись квадратичным членом. Поскольку первая производная K'(f) в точке f_0 равна нулю, выражение для w_2/z вблизи оптимума можно представить в виде

$$\frac{w_2}{z} = \frac{\lambda}{\pi w_1} \cdot \left\{ 1 + \frac{1}{2} \cdot \frac{\partial^2 K}{\partial f^2} \cdot \left(\Delta f \right)^2 \right\} = \frac{\lambda}{\pi w_1} \cdot \left\{ 1 + \frac{(\Delta f)^2}{2 \cdot \left(1 + f^2 \right)^2} \right\}$$
(24)

Определив из (18) соотношение между Δf и Δz , приведем (24) к выражению

$$\frac{w_2}{z} = \frac{\lambda}{\pi w_1} \cdot \left\{ 1 + \frac{\lambda^2}{\pi^2 w_2^4} \cdot \frac{(\Delta z)^2}{2} \right\} = \frac{\lambda}{\pi w_1} \cdot \{1 + E\}$$
(25)

Сомножитель перед $(\Delta z)^2$ характеризует скорость нарастания функции $K(\Delta z) = = 1 + E$. Поэтому при фиксированной длине волны λ критичность положения детектора определяется единственным параметром – размером пятна на нем w_2 .

На Рис. 6 приведены зависимости функции w_2/z в относительных единицах от величины смещения детектора от оптимального положения Δz для пучков с входной шириной $w_1 = 1$ мм (Кривые 1, 2, 3) и $w_1 = 0,5$ мм (1['], 2['], 3[']). Зависимости 1, 1['] соответствуют $w_2 = 0,025$ мм; 2, 2['] – $w_2 = 0,05$ мм; 3, 3['] – $w_2 = 0,1$ мм.

Следует заметить, что величина w_2 определяет относительное приращение функции w_2/z . Абсолютное приращение функции w_2/z при фиксированном зна-

Рис. 6. Зависимости функции (w_2/z) от величины смещения детектора от оптимального положения для пучков с различной входной и выходной шириной. Зависимости 1, 2, 3 соответствуют $w_1 = 1$ мм; 1['], 2['], 3['] – $w_1 = 0,5$ мм. Кривые 1, 1['] относятся к $w_2 = 0,025$ мм; 2, 2['] – $w_2 = 0,05$ мм; 3, 3['] – $w_2 = 0,1$ мм.

чении Δz пропорционально ~ $w_1^{-1} \cdot w_2^{-4}$. Поэтому для пучков с меньшей входной шириной величина w_2/z растет быстрее.

Задав для $K(\Delta z) = 1 + E$ предельно допустимое превышение *E*, найдем условие для возможного смещения детектора от оптимального положения Δz и выразим его через различные сочетания параметров пучка

$$\Delta z \le f_0^2 \cdot \frac{\pi w_1^2}{\lambda} \cdot \sqrt{2E} = f_0 \cdot R \cdot \sqrt{2E} = \frac{\lambda}{\pi} \cdot \frac{R^2}{w_1^2} \cdot \sqrt{2E} = \frac{\pi w_2^2}{\lambda} \cdot \sqrt{2E}$$
(26)

Учитывая, что $z = R = f_0 \pi w_1^2 / \lambda$, величина допустимого относительного смещения детектора $\delta z = \Delta z / z$ будет равна

$$\delta_{z} = \frac{\Delta z}{z} \le f_0 \cdot \sqrt{2E} = \frac{\lambda}{\pi} \cdot \frac{R}{w_1^2} \cdot \sqrt{2E} = \frac{w_2}{w_1} \cdot \sqrt{2E}$$
(27)

Зная реально возможную точность установки детектора в оптимальном положении (с учетом погрешности определения радиуса кривизны пучка в плоскости образца) Δz_r можно получить условие для расстояния z и для размера пятна w_2 .

$$z \ge \frac{(\Delta z_r)}{f_0 \sqrt{2E}} = w_1 \cdot \sqrt{\frac{\pi}{\lambda} \cdot \frac{(\Delta z_r)}{\sqrt{2E}}}$$
(28)

$$w_2 \ge \sqrt{\frac{\lambda}{\pi} \cdot \frac{(\Delta z_r)}{\sqrt{2E}}}$$
(29)

Положив величину предельно допустимого превышения Е равной 0,05, получим следующие формулы для минимальных значений расстояния от образца до детектора и для параметра ширины пятна *w*₂

$$z_{\min} = 125 \cdot \sqrt{\Delta z_r} \cdot w_1 \quad (MM) \tag{30}$$

$$w_{2\min} = 0,025 \cdot \sqrt{\Delta z_r} \quad (MM) \tag{31}$$

Все параметры z_{\min} , Δz_r , w_1 , $w_{2\min}$ в формулах (30) и (31) выражены в миллиметрах.

4. Ограничения на диаметр зондирующего пучка.

Оптическая схема, обеспечивающая максимальную чувствительность системы, может быть реализована различными способами с вариацией параметров пучка в широких пределах. Однако, при выборе оптимальной конфигурации следует учитывать ряд ограничений. В частности, ограничения на входной и выходной параметры ширины Гауссова пучка.

Во-первых, необходимо, чтобы поперечный размер пучка в плоскости образца не превышал ширину исследуемых оптических неоднородностей D, т. е. $w_1 \le (0,4 \div 0,5)$ ·D. А во-вторых, пятно на фотодетекторе не должно выходить за пределы приемной площадки при максимальном смещении пучка относительно центра, т. е.

$$1,3w_2 + \alpha \ z < A \tag{32}$$

где 1,3 *w*₂ – полуширина пучка по уровню 0,03 интенсивности и по уровню 0,97 мощности; *α* – максимальный угол отклонения пучка в образце.

Учитывая, что в оптимальном случае связь между w_2 и z определяется выражением (13) – $w_2/z = \lambda/\pi w_1$, получим условие как для максимального пара-

метра ширины пучка на выходе, так и для соответствующего ему расстояния между образцом и детектором

$$w_{2\max} = \frac{A}{1,3 + \alpha \pi w_1 / \lambda}$$
(33)

$$z_{\max} = \frac{A}{1,3\lambda/(\pi w_1) + \alpha}$$
(34)

На Рис. 7 (а, б) представлены зависимости максимально допустимых параметра ширины пятна на фотодетекторе $w_{2\text{max}}$ (а) расстояния z_{max} (б) от параметра ширины пучка в плоскости образца w_1 . Графики получены для детектора с размером секции A = 1 мм. Кривые 1 относятся к максимальному углу отклонения пучка $\alpha = 10^{-6}$; $2 - 10^{-5}$ $3 - 10^{-4}$. Видно, что z_{max} увеличивается, а $w_{2\text{max}}$ уменьшается с ростом ширины пучка в плоскости образца.

На этих рисунках также показаны графики для минимальных значений $w_{2\min}$ и z_{\min} , полученные из выражений (30) и (31). Кривые 4 соответствуют погрешности установки детектора $\Delta z_r = 10$ мм; 5 – 30 мм; 6 – 50 мм.

Кроме указанных ограничений следует также иметь в виду, что для работы в более или менее линейном режиме максимальное смещение пятна на фотодетекторе α_z не должно превышать ~ 0,6 · w_2 (см. раздел 1.3). Отсюда, с учетом (33) и (34), требование к w_2 и соответствующему ему расстоянию z

$$z_{lin} \ge \frac{\pi A}{2\lambda} \cdot w_1 \tag{35}$$

$$w_{2lin} \ge 0.5 \cdot A \tag{36}$$

Зависимости, соответствующие формулам (34) и (35) и показывающие приблизительную границу линейной области, обозначены на Рис. 7 (а, б) цифрой 7.

Следует заметить, что при больших углах отклонения пучка α и/или параметрах ширины пучка в плоскости образца w_1 , а точнее при $\alpha \cdot w_1 > 1,4 \cdot 10^{-4}$ (рад·мм), линейный режим не может быть реализован, т. к. $z_{lin} > z_{max}$ и $w_{2lin} > w_{2max}$. Это соответствует ситуации, когда неоднородности достаточно большие по величине Δn и/или по размеру *d* вдоль зондирующего луча: $\Delta n \cdot d > 7 \cdot 10^{-5}$ (мм). Но в таких случаях проблем с регистрацией возникать не должно, и нет необходимости в очень высокой чувствительности и в оптимизации оптической схемы.

Рис. 7. Зависимости максимальных (Кривые 1, 2, 3) и минимальных (4, 5, 6) размера пятна w_2 (а) и расстояния z (б) от ширины пучка в плоскости образца для детектора с размером секции 1 мм. Прямые 7 соответствуют границе линейной области.

Кривые 1 – максимальный угол отклонения пучка $\alpha = 10^{-6}$, $2 - 10^{-5}$, $3 - 10^{-4}$. Кривые 4 – погрешность установки детектора $\Delta z_r = 10$ мм, 5 - 30 мм, 6 - 50 мм. Для получения линейного режима достаточно уменьшить диаметр пучка в плоскости образца относительно ширины исследуемых оптических неоднородностей D, понизив при этом уровень чувствительности.

5. Заключение.

В работе рассмотрены вопросы чувствительности метода Теплера с двухсекционным фотодетектором. Определены зависимости разностного сигнала Uот величины смещения пятна на детекторе x для Гауссова пучка и для пучка с равномерным распределением интенсивности. Установлены ширина области, в которой функция U(x) близка к линейной и скорость ее роста в этой области. Показано, что при изменении размера пятна на детекторе меняется масштаб зависимости вдоль оси абсцисс, а при изменении мощности зондирующего излучения – вдоль оси ординат.

Проведена оптимизация оптической схемы с целью улучшения чувствительности экспериментальной установки. Установлено, что максимально возможная чувствительность, пропорциональная ширине пучка в образце, достигается при наименьшем отношении диаметра пятна на детекторе к расстоянию между детектором и образцом.

Определены зависимости изменения чувствительности экспериментальной установки от величины смещения детектора от оптимального положения. Показано, что при смещении детектора относительное уменьшение чувствительности полностью определяется размером пятна на нем w_2 и пропорционально ~ w_2^{-4} .

Рассмотрены ограничения на диаметр пучка, связанные с шириной исследуемых оптических неоднородностей D и размером приемной площадки детектора. Определены условия для максимального параметра ширины пучка w_2 и для соответствующего ему расстояния между образцом и детектором z. Сформулированы требования к параметрам w_2 и z, выполнение которых необходимо для реализации линейного режима.

Полученные результаты позволяют выбирать параметры экспериментальной установки, которые обеспечивают максимальную чувствительность измерений, приемлемые требования к точности установки элементов и линейный режим регистрации.

Литература.

1. G.Meier. Computerized background-oriented schlieren. Experiments in Fluids, 2002, v. 33, No. 1, pp. 181-187.

2. Н. М.Скорнякова. Применение теневого фонового метода. Труды X Юбилейной Международной научно-технической конференции «Оптические методы исследования потоков», М.: Изд. МЭИ, 2009, с. 66-71.

3. С.В.Грибин, Г.В.Островская. Проблемы интерпретации голографических инерферограмм вблизи фронтов ударных волн, ЖТФ, 1998, т. 68, № 9, с. 88-91.

4. М.А.Смагин, С.И.Булатицкий, А.Е.Пономарев, О.А.Сапожников. Шлиренвизуализация низкоинтенсивных ультразвуковых полей, Биомедицинские технологии и радиоэлектроника, 2006, № 8-9, с. 44-49.

5. О.Л. Белобородова, Б.А. Князев, А.Н. Матвеенко, В.С. Черкасский. Использование шлирен-метода для диагностики тонких плазменных слоев, Аннотации докладов XXVI Звенигородской конференции по физике плазмы и управляемому термоядерному синтезу (г. Звенигород, Московская обл., 5-9 апреля 1999 г.), www.fpl.gpi.ru/Zvenigorod/XXVI/itns.html

6. Е.М.Кудрявцев, С.Д. Зотов, А.А.Лебедев. Медленные уединенные упругие волны, - о характеристиках этого нового явления и о перспективах его использования для контроля за состоянием горных пород. Препринт ФИАН № 5, 2009, 16 с.

7. А.А.Кузнецов. Исследование уединенных упругих волн в плексигласе методом Теплера. Препринт ФИАН № 25, 2009, 12 с.

8. Л.А.Васильев. Теневые методы. М.: Наука, 1968, 400 с.

9. Ю.А.Ананьев. Оптические резонаторы и лазерные пучки. М.: Наука, 1990, 264 с.