РАСЧЕТ СТРУКТУРЫ ПОЛЯЛАЗЕРНОГО ИЗЛУЧЕНИЯ РАЗЛИЧНЫХ ПОЛЯРИЗАЦИЙ В ФОКАЛЬНОЙ ОБЛАСТИИ ДЕАЛЬНОЙ ФОКУСИРУЮЩЕЙ ЛИНЗЫ МЕТОДАМИ СКАЛЯРНОЙ ТЕОРИИ ДИФРАКЦИИ

Ю.В. Крыленко, Ю.А. Михайлов, А.С. Орехов, Г.В. Склизков, А.М. Чекмарев

Физический институт им. П.Н. Лебедева РАН (ФИАН)

Введение

Фазово-пространственная структура электромагнитного поля в фокальной области линзы имеет важное значение для многих областей физики, в том числе для лазерного термоядерного синтеза. Например, при решении проблемы равномерности абляционного давления на мишени [1,2], что весьма важно для достижения высокой степени сжатия лазерных термоядерных мишеней, для исследования возможностей и эффективности стохастического ускорения электронов в плазме [3,4]. Возможность расчета структуры поля лазерного излучения на поверхности мишени и корреляции этого поля с экспериментальными данными имеет принципиальное значение при экспериментальной реализации ряда диагностических методик исследования плазмы, в частности, методики, основанной на рассеянии высокоэнергичных электронов на спонтанных магнитных полях в плазме [5].

Анализу фазово-пространственной структуры электромагнитного поля в фокальной плоскости линзы посвящено много работ (см., например, [6-8]). Однако специфика конкретной решаемой задачи требует специального рассмотрения. Вывод основных формул расчета поля вблизи фокуса идеальной линзы методом интеграла Дебая для линейно поляризованного излучения дан в [6], где так же показаны пределы применимости метода. Условия применимости метода Кирхгофа указаны в [9].

В данной работе сделан расчет поля вблизи фокуса идеальной линзы двумя методами для различно поляризованного излучения (линейно, радиально и азимутально). Выведены аналитические формулы для напряженности поля вблизи фокуса радиально и азимутально поляризованного излучения при расчете по методу Дебая. Для описания поворота вектора напряженности при преломлении идеальной линзой используется метод кватернионов. Проведено сравнение двух методов (Дебая и Кирхгофа) по результатам расчета и быстродействию.

Постановка задачи

На линзу диаметром 4 см и фокусом 10 см падает излучение от импульсного Nd-лазера (длина волны $\lambda = 1,06$ мкм). Рассчитать методом дифракционных интегралов распределение интенсивности вблизи фокальной плоскости двумя способами — методом интеграла Кирхгофа и методом приближения Дебая. Сравнить результаты расчета с экспериментальными данными.

Метод Кирхгофа

Рассмотрим кратко данный метод расчета дифрагирующих полей (вывод, скалярный характер, допущения и область применимости).

Пусть на идеальную линзу падает плоская монохроматическая волна:

$$u(\vec{r},t) = u_0 \cdot e^{-i \cdot (\omega \cdot t - \vec{k} \cdot \vec{r})}$$
 (1)

Идеальная линза, по определению, преобразует плоский волновой фронт падающей на нее волны в сферический. Введем две системы координат как показано на (рис. 1).

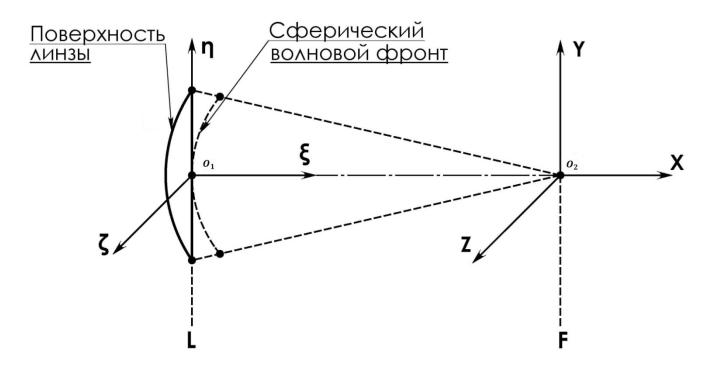


Рис. 1. XYZ: начало O_2 расположено в фокусе линзы, ось O_2X совпадает с оптической осью. $\xi\eta\zeta$: ось $O_1\xi$ совпадает с оптической осью, $O_1O_2=F$ (фокусному расстоянию линзы). Источники вторичных сферических волн расположены на волновом фронте за линзой (см. рис. 2)

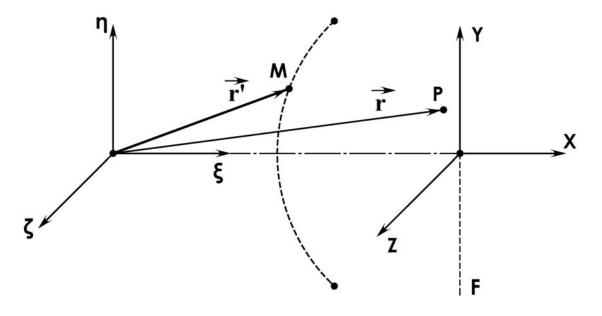


Рис. 2. Расположение источников вторичных сферических волн на волновом фронте: M – точка на волновом фронте (источник вторичных волн); P – точка, в которой рассчитывается поле

$$\begin{cases}
\Delta u + k^{2} \cdot u = 0 \\
\Delta G + k^{2} \cdot G = -4\pi \cdot \delta(\vec{r} - \vec{r}^{*})
\end{cases}$$

$$G(\vec{r}, \vec{r}^{*}) = \frac{e^{i \cdot \vec{k} \cdot (\vec{r} - \vec{r}^{*})}}{|\vec{r} - \vec{r}^{*}|}$$
(2)

Используя вторую теорему Грина:

$$\oint_{S} (f \cdot \nabla \varphi - \varphi \cdot \nabla f) \, d\vec{S}^* = \int_{V} (f \cdot \Delta \varphi - \varphi \cdot \Delta f) dV^* \tag{3}$$

Берем $f = u(\vec{r})$ и $\varphi = G(\vec{r}, \vec{r}^*)$; с учетом уравнений (1), (2), получаем:

$$u(\vec{r}) = \frac{1}{4\pi} \cdot \oint_{S} \left(G(\vec{r}, \vec{r}^*) \cdot \nabla u(\vec{r}^*) - u(\vec{r}^*) \cdot \nabla G(\vec{r}, \vec{r}^*) \right) d\vec{S}^* \tag{4}$$

После некоторых математических упрощений (см. приложение В), из (4) получаем окончательную расчетную формулу (см. поясняющие рис. 2 и рис. 3):

$$E_{\alpha}(P) = \frac{i}{\lambda} \cdot \int_{\Sigma} E_{\alpha}(M) \cdot \frac{e^{-i \cdot k \cdot |\vec{r} - \vec{r}^{*}|}}{|\vec{r} - \vec{r}^{*}|} \cdot \frac{(1 + \cos \varphi)}{2} d\sigma$$
 (5)

$$(\alpha = x, y, z)$$

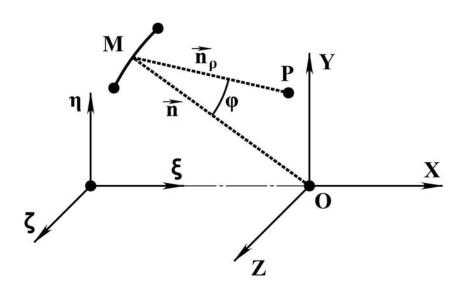


Рис. 3 Пояснения к методу Кирхгофа: \vec{n} — нормаль к волновому фронту в точке M, P — точка, в которой определяется амплитуда поля, $\vec{n}_{\rho} = \frac{\overrightarrow{MP}}{|\overrightarrow{MP}|}$

Расчет проводится для каждой компоненты отдельно, в результате получим результирую-

щий вектор поля
$$\vec{E}(P) = \begin{pmatrix} E_\chi(P) \\ E_y(P) \\ E_Z(P) \end{pmatrix}$$
.

Для расчета результирующего поля по формуле (5) необходимо знать ориентацию вектора $\vec{E}(M)$ после преломления линзой. Задача преломления поляризованного света на сферической поверхности является идейно простой, но математически — громоздкой. Под этой задачей понимается следующее (пояснения приводятся для линейно поляризованного падающего излучения):

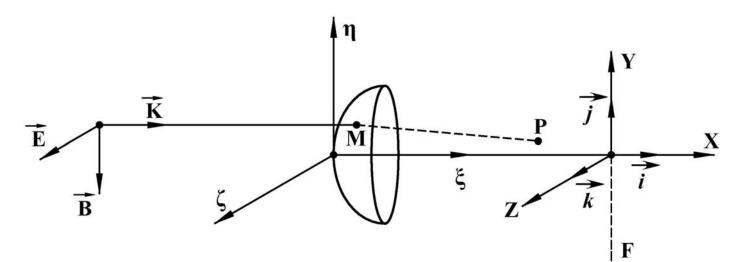


Рис. 4. Преломление света фокусирующей линзой

На линзу падает линейно поляризованная электромагнитная волна:

$$\vec{E} = \begin{pmatrix} E_{\xi} = 0 \\ E_{\eta} = 0 \\ E_{\zeta} = E_{0} \end{pmatrix} \qquad \qquad \vec{B} = \begin{pmatrix} B_{\xi} = 0 \\ B_{\eta} = -B_{0} \\ B_{\zeta} = 0 \end{pmatrix} \tag{6}$$

Цель — вычислить проекции векторов \vec{E} и \vec{B} преломленной волны.

Пусть F — фокус линзы, P — точка, в которой определяется поле, M — точка на волновом фронте непосредственно за линзой.

Тогда в точке M плоскость, содержащая векторы \vec{E} и \vec{B} падающей волны повернется вокруг оси

$$\vec{e} = \frac{\vec{k} \times \frac{\overrightarrow{MP}}{\overrightarrow{MP}}}{\left| \vec{k} \times \frac{\overrightarrow{MP}}{\overrightarrow{MP}} \right|} \tag{7}$$

на угол

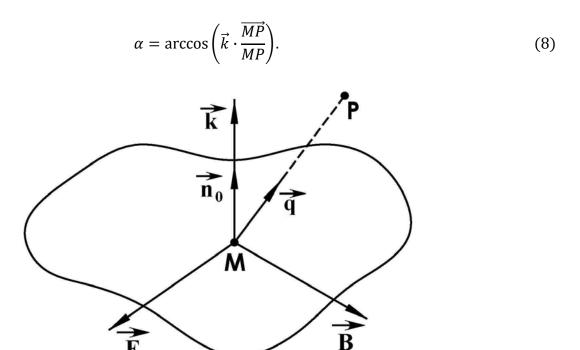


Рис. 5. Пояснения к преломлению векторов \vec{E} и \vec{B}

Преобразование базиса при поворотах его как твердого тела вокруг заданной оси \vec{e} на определенный угол α изящнее всего описывать кватернионами. Ниже приводится их краткое описание.

Кватернион — это гиперкомплексное число, элемент четырехмерного векторного пространства над полем вещественных чисел.

$$\Lambda = \lambda_0 i_0 + \lambda_1 i_1 + \lambda_2 i_2 + \lambda_3 i_3,$$

где i_k ($k=\overline{0,3}$) — какой-либо базис; λ_k ($k=\overline{0,3}$) — координаты вектора Λ в заданном базисе.

Геометро – числовая интерпретация:

$$i_0 = 1;$$

 $i_k \ (k = \overline{1,\!3})$ — орты некоторого базиса трехмерного евклидового пространства.

Таким образом,

$$\Lambda = \lambda_0 + \lambda_1 i_1 + \lambda_2 i_2 + \lambda_3 i_3 = \lambda_0 + \vec{\lambda}.$$

Для кватернионов определяют следующие операции (знак «*» означает кватернионное умножение, определение см. ниже):

1.
$$(\Lambda * M) * N = \Lambda * (M * N);$$

2.
$$(\Lambda + M) * (N + R) = \Lambda * N + M * N + \Lambda * R + M * R$$
;

3. $(\lambda \Lambda) * (\mu M) = \lambda \mu \Lambda * M (\lambda, \mu$ — действительные числа).

Операция умножения не коммутативна:

$$\Lambda * M \neq M * \Lambda$$
.

В случае геометро – числовой интерпретации определяют:

$$\vec{\iota}_k * \vec{\iota}_k = -1;$$

$$\vec{\iota}_k * \vec{\iota}_l = \vec{\iota}_k \times \vec{\iota}_l, \qquad (k \neq l).$$

 $\Lambda = \lambda_0 + \vec{\lambda};$

Тогда

$$\mathbf{M} = \mu_0 + \vec{\mu};$$

$$\Lambda * \mathbf{M} = \lambda_0 \mu_0 - \vec{\lambda} \cdot \vec{\mu} + \lambda_0 \vec{\mu} + \mu_0 \vec{\lambda} + \vec{\lambda} \times \vec{\mu};$$
(9)

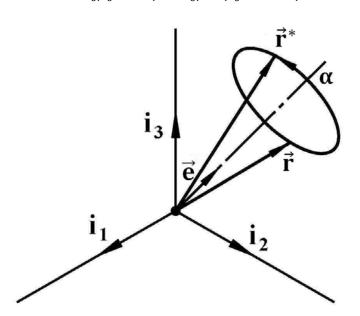


Рис. 6. Поворот вектора \vec{r} вокруг оси \vec{e} на угол α

Пусть вектор \vec{r} поворачивается вокруг оси, заданной единичным вектором \vec{e} на угол α . Требуется вычислить проекции вектора \vec{r}^* .

Вот как изящно это получается с помощью кватернионов:

$$\vec{r}^* = \Lambda * \vec{r} * \overline{\Lambda},\tag{10}$$

где $\Lambda = cos\frac{\alpha}{2} + sin\frac{\alpha}{2} \cdot \vec{e}$ и $\bar{\Lambda} = cos\frac{\alpha}{2} - sin\frac{\alpha}{2} \cdot \vec{e}$, $\bar{\Lambda}$ называется сопряженным кватернионом.

Выполняя в формуле (10) кватернионное умножение, получим окончательную формулу для вектора \vec{r}^* .

$$\vec{r}^* = (\sin^2 \frac{\alpha}{2}) \cdot (\vec{e} \cdot \vec{r}) \cdot \vec{e} + (\cos^2 \frac{\alpha}{2}) \cdot \vec{r} + (\sin\alpha) \cdot (\vec{e} \times \vec{r}) + (\sin^2 \frac{\alpha}{2}) \cdot (\vec{e} \times (\vec{e} \times \vec{r})). \tag{11}$$

Приведем простейший пример.

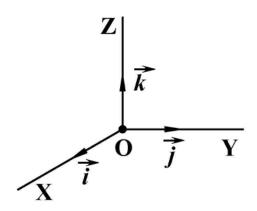


Рис. 7. Простейший пример применения кватернионов

Пусть новый базис (\vec{t}^* , \vec{j}^* , \vec{k}^*) получается из старого (\vec{t} , \vec{j} , \vec{k}) поворотом вокруг оси \vec{t} на угол $\frac{\pi}{2}$. Вычислим с помощью аппарата кватернионов, какие проекции имеет орт \vec{j}^* повернутого базиса в старом, неподвижном (ответ очевиден сразу: $\vec{j}^* = \vec{k}$).

Кватернион поворота в данном случае имеет вид $\Lambda = \cos\left(\frac{\alpha}{2}\right) + \sin\left(\frac{\alpha}{2}\right) \cdot \vec{\iota}$, где угол поворота $\alpha = \frac{\pi}{2}$. $\vec{J}^* = \Lambda * \vec{J} * \overline{\Lambda}$

Используя формулу (9), находим произведения сомножителей:

$$\Lambda * \vec{j} = -\sin\left(\frac{\alpha}{2}\right) \cdot \vec{i} \cdot \vec{j} + \cos\left(\frac{\alpha}{2}\right) \cdot \vec{j} + \sin\left(\frac{\alpha}{2}\right) \cdot (\vec{i} \times \vec{j}) = \cos\left(\frac{\alpha}{2}\right) \cdot \vec{j} + \sin\left(\frac{\alpha}{2}\right) \cdot \vec{k}$$

$$(\Lambda * \vec{j}) * \overline{\Lambda} = \left(\cos\left(\frac{\alpha}{2}\right) \cdot \vec{j} + \sin\left(\frac{\alpha}{2}\right) \cdot \vec{k}\right) \cdot \left(\cos\left(\frac{\alpha}{2}\right) - \sin\left(\frac{\alpha}{2}\right) \cdot \vec{i}\right) =$$

$$= -\left(\cos\left(\frac{\alpha}{2}\right) \cdot \vec{j} + \sin\left(\frac{\alpha}{2}\right) \cdot \vec{k}\right) \cdot \left(-\sin\left(\frac{\alpha}{2}\right) \cdot \vec{i}\right) + \cos\left(\frac{\alpha}{2}\right) \cdot \left(\cos\left(\frac{\alpha}{2}\right) \cdot \vec{j} + \sin\left(\frac{\alpha}{2}\right) \cdot \vec{k}\right)$$

$$+ \left(\cos\left(\frac{\alpha}{2}\right) \cdot \vec{j} + \sin\left(\frac{\alpha}{2}\right) \cdot \vec{k}\right) \times \left(-\sin\left(\frac{\alpha}{2}\right) \cdot \vec{k}\right) =$$

$$= \cos^2\left(\frac{\alpha}{2}\right) \cdot \vec{j} + \sin\left(\frac{\alpha}{2}\right) \cdot \cos\left(\frac{\alpha}{2}\right) \cdot \vec{k} - \sin\left(\frac{\alpha}{2}\right) \cdot \cos\left(\frac{\alpha}{2}\right) \cdot (\vec{j} \times \vec{i}) - \sin^2\left(\frac{\alpha}{2}\right) \cdot (\vec{k} \times \vec{i}) =$$

$$= \cos(\alpha) \cdot \vec{j} + \sin(\alpha) \cdot \vec{k}.$$

Итак, $\vec{j}^* = \cos(\alpha) \cdot \vec{j} + \sin(\alpha) \cdot \vec{k}$, подставляя угол поворота $\alpha = \frac{\pi}{2}$, получим $\vec{j}^* = \vec{k}$.

МетодДебая

Для упрощения расчетов и получения наглядных аналитических формул рассмотрим следующее приближение на основе интеграла Кирхгофа для вычисления поля вблизи фокуса.

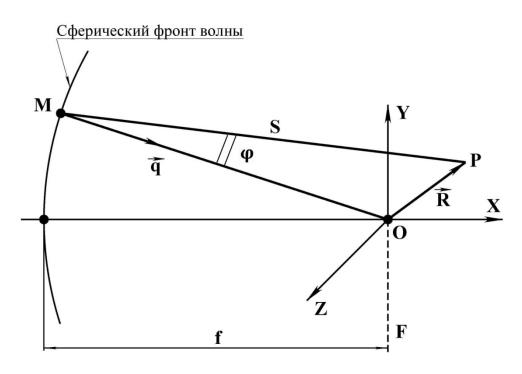


Рис. 8. Пояснения к методу Дебая

Систему координат выберем следующим образом: ось OX — вдоль оптической оси, оси OY и OZ — перпендикулярны оптической оси и образуют с осью OX правую систему координат. Центр O находится в фокусе линзы.

Волновой фронт за линзой предполагаем сферический.

M — точка на волновом фронте.

P — точка, в которой определяются значения векторов напряженности электромагнитного поля.

f — фокусное расстояние линзы.

 \vec{q} — единичный вектор (безразмерный), нормаль к волновому фронту в точке M.

s — расстояние MP.

$$|\vec{R}| = OP$$
.

Запишем сначала интеграл Кирхгофа для расчета поля в точке P:

$$\varepsilon(P) = \frac{i}{\lambda} \cdot \iint_{\Sigma} \varepsilon(M) \cdot \frac{e^{-i \cdot k \cdot s}}{s} \cdot \left(\frac{1 + \cos\varphi}{2}\right) \cdot d\sigma. \tag{12}$$

Далее, проведем некоторые эквивалентные преобразования под интегралом с целью перейти к интегрированию по телесному углу:

$$\varepsilon(P) = \frac{i}{\lambda} \cdot \iint_{\Sigma} e^{-i \cdot k \cdot f} \cdot e^{i \cdot k \cdot f} \cdot \frac{f}{f} \cdot \varepsilon(M) \cdot \frac{e^{-i \cdot k \cdot s}}{s} \cdot \left(\frac{1 + \cos\varphi}{2}\right) \cdot d\sigma; \tag{13}$$

$$\varepsilon(P) = \frac{i}{\lambda} \cdot e^{-i \cdot k \cdot f} \cdot f \cdot \iint_{\Sigma} \varepsilon(M) \cdot \frac{e^{-i \cdot k \cdot (s - f)}}{f \cdot s} \cdot \left(\frac{1 + \cos\varphi}{2}\right) \cdot d\sigma. \tag{14}$$

Чтобы перейти к интегралу Дебая, примем следующие упрощения:

- 1) $s \approx f$:
- 2) $s f \approx \vec{q} \cdot \vec{R}$;
- 3) $\left(\frac{1+\cos\varphi}{2}\right) \approx 1.$

Тогда, с учетом того, что $\frac{d\sigma}{f \cdot s} \approx \frac{d\sigma}{f^2} = d\Omega$ (телесный угол с началом в точке O, содержащий элементарную площадку волнового фронта с центром в точке M), интеграл Кирхгофа запишется в виде:

$$E_{\alpha}(P) \cong \frac{i}{\lambda} \cdot f \cdot e^{-i \cdot k \cdot f} \cdot \int_{\Omega} E_{\alpha}(M) \cdot e^{-i \cdot k \cdot \vec{q} \cdot \vec{R}} d\Omega, \tag{15}$$

который называется интегралом Дебая. Такое представление поля в точке наблюдения позволяет получить аналитические формулы, удобные для расчета в пределах ограничений, накладываемых на область наблюдения (см. приложение В).

Линейная поляризация.

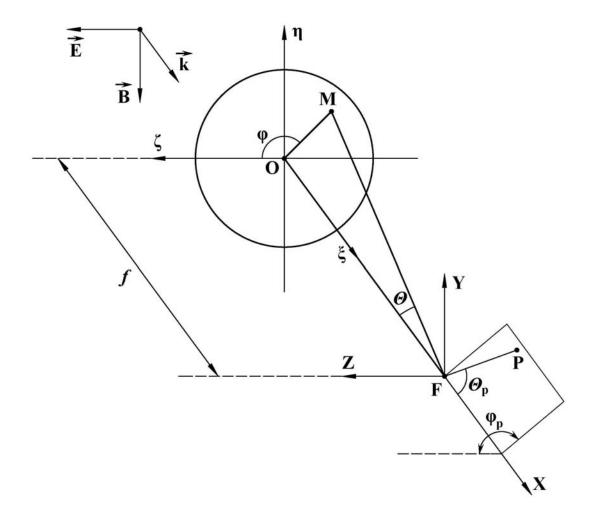


Рис. 9. Пояснение к выводу расчетных формул: точка M на сферическом волновом фронте описывается координатами $(\varphi, \theta, FM = f)$, где f – фокусное расстояние линзы; точка P, в которой рассчитывается поле, описывается координатами $(\varphi_p, \theta_p, r_p = FP)$

Начало системы координат XYZ находится в фокусе линзы, ось FX совпадает с оптической осью, ось FZ сонаправлена с вектором \vec{E} в падающей волне (определяющим направление поляризации падающего излучения), ось FY направлена перпендикулярно осям FX и FZ.

Система координат $\xi\eta\zeta$ расположена непосредственно за линзой. Начало О находится на оптической оси, ось $O\xi$ совпадает с оптической осью, ось $O\zeta$ сонаправлена с вектором \vec{E} в падающей волне, ось $O\eta$ направлена перпендикулярно осям $O\xi$ и $O\zeta$.

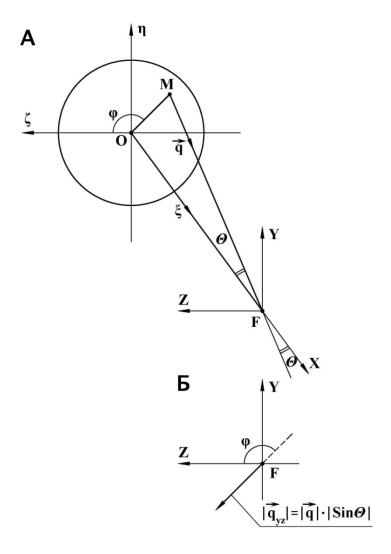


Рис. 10. Пояснение к вычислению проекций единичного безразмерного вектора \vec{q} (нормаль к сферическому волновому фронту). Из A) следует, что $q_x = cos\theta$. На Б) показана векторная проекция \vec{q} на плоскость ZFY. Из Б) следует, что $q_y = -sin\theta \cdot sin\phi$, $q_z = -sin\theta \cdot cos\phi$

Для расчета поля вблизи фокуса по формуле Дебая (17) нужно найти проекции преломленного линзой вектора $\vec{E}(M)$ в базисе \vec{i} , \vec{j} , \vec{k} (рис. 4).При преломлении, плоскость, содержащая векторы \vec{E} и \vec{B} повернется в точке M вокруг оси $\frac{(\vec{n}_0 \times \vec{q})}{|(\vec{n}_0 \times \vec{q})|}$ на угол $\arccos{(\vec{n}_0 \cdot \vec{q})}$ (см. рис. 4 и рис. 5), где \vec{n}_0 — единичный вектор, коллинеарный волновому вектору \vec{k} падающей волны; \vec{q} — единичная нормаль к сферическому волновому фронту в точке M. Тогда, после преломления, электрический вектор волны в базисе \vec{i} , \vec{j} , \vec{k} есть

$$\vec{E}^* = \Lambda * \vec{E} * \overline{\Lambda}, \tag{16}$$

где \vec{E} – вектор напряженности падающей на линзу волны;

 $\Lambda = \cos\frac{\alpha}{2} + \sin\frac{\alpha}{2} \cdot \vec{e}, \ \overline{\Lambda} = \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \cdot \vec{e}$ — кватернион поворота и сопряженный ему;

 $\alpha=\arccos{(\vec{n}_0\cdot\vec{q})},\,\vec{e}=rac{\vec{n}_0 imes\vec{q}}{|\vec{n}_0 imes\vec{q}|}$ – угол поворота и орт оси поворота.

$$\vec{E} = \begin{pmatrix} 0 \\ 0 \\ E_0 \end{pmatrix}, \vec{n}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{q} = \begin{pmatrix} \cos\theta \\ -\sin\theta \cdot \sin\varphi \\ -\sin\theta \cdot \cos\varphi \end{pmatrix}, \vec{e} = \frac{\vec{n}_0 \times \vec{q}}{|\vec{n}_0 \times \vec{q}|} = \begin{pmatrix} 0 \\ \cos\varphi \\ -\sin\varphi \end{pmatrix},$$

$$\alpha = \arccos(\vec{n}_0 \cdot \vec{q}) = \arccos(\cos\theta) = \theta.$$

См. поясняющие рисунки (рис. 9 и рис. 10).

Чтобы воспользоваться формулой (11), вычислим $(\vec{e} \cdot \vec{E})$, $(\vec{e} \times \vec{E})$ и $(\vec{e} \times (\vec{e} \times \vec{E}))$.

$$\vec{e} \cdot \vec{E} = -E_0 \cdot \sin \varphi;$$

$$\vec{e} \times \vec{E} = \begin{pmatrix} E_0 \cdot \cos\varphi \\ 0 \\ 0 \end{pmatrix}, \vec{e} \times (\vec{e} \times \vec{E}) = \begin{pmatrix} 0 \\ -E_0 \cdot \sin\varphi \cdot \cos\varphi \\ -E_0 \cdot \cos^2\varphi \end{pmatrix}.$$

Тогда преломленный вектор напряженности в точке M волнового фронта есть

$$\vec{E}^* = \begin{pmatrix} E_0 \cdot \sin\theta \cdot \cos\varphi \\ E_0 \cdot (\cos\theta - 1) \cdot \sin\varphi \cdot \cos\varphi \\ E_0 \cdot (\cos\theta + (1 - \cos\theta) \cdot \sin^2\varphi) \end{pmatrix}. \tag{17}$$

Далее, для вычисления интеграла Дебая (17) выразим $\vec{R} = \vec{FP}$ через φ_p , θ_p , r_p (рис. 9), характеризующие положение точки P, в которой рассчитывается поле, относительно фокуса F.

$$\vec{R} = \overrightarrow{OP} = \begin{pmatrix} r_p \cdot \cos\theta_p \\ r_p \cdot \sin\theta_p \cdot \sin\varphi_p \\ r_p \cdot \sin\theta_p \cdot \cos\varphi_p \end{pmatrix};$$

$$\vec{q} \cdot \vec{R} = r_p \cdot (\cos\theta \cdot \cos\theta_p - \sin\theta_p \cdot \sin\theta \cdot \cos(\varphi_p - \varphi)).$$

Теперь все известно для записи интеграла Дебая (15) в более конкретном виде.

$$E_{x}(P) = \frac{i}{\lambda} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot E_{0} \cdot \int_{\Omega} d\Omega \cdot \sqrt{|\cos\theta|} \cdot \sin\theta \cdot \cos\varphi \cdot e^{-i \cdot k \cdot r_{p} \cdot (\cos\theta \cdot \cos\theta_{p} - \sin\theta_{p} \cdot \sin\theta \cdot \cos(\varphi_{p} - \varphi))}$$

$$E_{y}(P) = \frac{i}{\lambda} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot E_{0} \cdot \int_{\Omega} d\Omega \cdot \sqrt{|\cos \theta|} \cdot (\cos \theta - 1) \cdot \sin \varphi \cdot \cos \varphi \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$\cdot e^{-i \cdot k \cdot r_p \cdot (cos\theta \cdot cos\theta_p - sin\theta_p \cdot sin\theta \cdot cos\left(\varphi_p - \varphi\right))}$$

$$\begin{split} E_z(P) &= \frac{i}{\lambda} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot E_0 \cdot \int\limits_{\Omega} d\Omega \cdot \sqrt{|cos\theta|} \cdot (cos\theta + (1 - cos\theta) \cdot sin^2 \varphi) \\ &\cdot e^{-i \cdot k \cdot r_p \cdot (cos\theta \cdot cos\theta_p - sin\theta_p \cdot sin\theta \cdot cos(\varphi_p - \varphi))}. \end{split}$$

Множитель $\sqrt{|cos\theta|}$ выражает закон сохранения энергии излучения при фокусировке.

 $d\Omega = sin\theta \cdot d\theta \cdot d\varphi, \, \theta \in [\pi - \alpha, \pi], \, \varphi \in [0, 2\pi], \, \alpha$ – апертурный угол, равный arcsin $(\frac{D}{2 \cdot f})$.

Используя тождества $sin \varphi \cdot cos \varphi = \frac{sin 2\varphi}{2}, sin^2 \varphi = \frac{1-cos 2\varphi}{2},$ запишем:

$$\begin{split} E_x(P) &= \frac{i}{\lambda} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot E_0 \cdot \int\limits_{\pi - \alpha}^{\pi} d\theta \sqrt{|\cos \theta|} \cdot \sin^2 \theta \\ & \cdot e^{-i \cdot k \cdot r_p \cdot \cos \theta_p \cdot \cos \theta} \int\limits_{0}^{2\pi} d\varphi \cos \varphi \cdot e^{i \cdot k \cdot r_p \cdot \sin \theta_p \cdot \sin \theta \cdot \cos (\varphi - \varphi_p)} \,; \end{split}$$

$$\begin{split} E_{y}(P) &= \frac{i}{\lambda} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot E_{0} \cdot \int\limits_{\pi - \alpha}^{\pi} d\theta \, \sqrt{|cos\theta|} \cdot sin\theta \cdot (cos\theta - 1) \\ &\quad \cdot e^{-i \cdot k \cdot r_{p} \cdot cos\theta_{p} \cdot cos\theta} \int\limits_{0}^{2\pi} d\varphi \cdot sin2\varphi \cdot e^{i \cdot k \cdot r_{p} \cdot sin\theta_{p} \cdot sin\theta \cdot cos \, (\varphi - \varphi_{p})}; \end{split}$$

$$\begin{split} E_{z}(P) &= \frac{i}{\lambda} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot E_{0} \cdot (\int\limits_{\pi - \alpha}^{\pi} d\theta \sqrt{|cos\theta|} \cdot sin\theta \cdot \frac{(1 + cos\theta)}{2} \\ & \cdot e^{-i \cdot k \cdot r_{p} \cdot cos\theta_{p} \cdot cos\theta} \int\limits_{0}^{2\pi} d\phi \cdot e^{i \cdot k \cdot r_{p} \cdot sin\theta_{p} \cdot sin\theta \cdot cos} (\varphi - \varphi_{p}) - \int\limits_{\pi - \alpha}^{\pi} d\theta \sqrt{|cos\theta|} \cdot sin\theta \\ & \cdot \frac{(1 - cos\theta)}{2} \cdot e^{-i \cdot k \cdot r_{p} \cdot cos\theta_{p} \cdot cos\theta} \int\limits_{0}^{2\pi} d\phi \cdot cos2\phi \cdot e^{i \cdot k \cdot r_{p} \cdot sin\theta_{p} \cdot sin\theta \cdot cos} (\varphi - \varphi_{p})) \end{split}$$

Используя тождества

$$\int_{0}^{2\pi} \cos(n \cdot \varphi) \cdot e^{i \cdot \rho \cdot \cos(\varphi - \gamma)} d\varphi = 2\pi \cdot i^{n} \cdot J_{n}(\rho) \cdot \cos(n \cdot \gamma); \tag{18}$$

$$\int_{0}^{2\pi} \sin(n \cdot \varphi) \cdot e^{i \cdot \rho \cdot \cos(\varphi - \gamma)} d\varphi = 2\pi \cdot i^{n} \cdot J_{n}(\rho) \cdot \sin(n \cdot \gamma), \tag{19}$$

где $J_n(\rho)$ - функция Бесселя n-го порядка.

Получим окончательные формулы:

$$E_{x}(P) = -\frac{2\pi}{\lambda} \cdot E_{0} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot I_{1}(r_{p}, \theta_{p}) \cdot \cos \varphi_{p}; \tag{20}$$

$$E_{y}(P) = -i \cdot \frac{2\pi}{\lambda} \cdot E_{0} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot \frac{I_{2}(r_{p}, \theta_{p})}{2} \cdot \sin 2\varphi_{p}; \tag{21}$$

$$E_z(P) = i \cdot \frac{2\pi}{\lambda} \cdot E_0 \cdot F \cdot e^{-i \cdot k \cdot F} \cdot \frac{(I_0(r_p, \theta_p) - I_2(r_p, \theta_p) \cdot \cos 2\varphi_p)}{2}, \tag{22}$$

где

$$I_0(r_p, \theta_p) = \int_{\pi - \alpha}^{\pi} d\theta \sqrt{|\cos\theta|} \cdot \sin\theta \cdot (1 + \cos\theta) \cdot e^{-i \cdot k \cdot r_p \cdot \cos\theta_p \cdot \cos\theta} \cdot J_0(k \cdot r_p \cdot \sin\theta_p \cdot \sin\theta); \quad (23)$$

$$I_{1}(r_{p},\theta_{p}) = \int_{\pi-\alpha}^{\pi} d\theta \sqrt{|\cos\theta|} \cdot \sin^{2}\theta \cdot e^{-i\cdot k\cdot r_{p}\cdot \cos\theta_{p}\cdot \cos\theta} \cdot J_{1}(k\cdot r_{p}\cdot \sin\theta_{p}\cdot \sin\theta); \tag{24}$$

$$I_{2}(r_{p},\theta_{p}) = \int_{\pi-\alpha}^{\pi} d\theta \sqrt{|\cos\theta|} \cdot \sin\theta \cdot (\cos\theta - 1) \cdot e^{-i \cdot k \cdot r_{p} \cdot \cos\theta_{p} \cdot \cos\theta} \cdot J_{2}(k \cdot r_{p} \cdot \sin\theta_{p} \cdot \sin\theta). \tag{25}$$

Для магнитного поля вывод формул аналогичен, меняется лишь одно входное данное – вектор индукции магнитного поля в падающей волне:

$$\vec{B} = \begin{pmatrix} 0 \\ -B_0 \\ 0 \end{pmatrix}.$$

В результате получаем:

$$\vec{B}^* = \begin{pmatrix} -B_0 \cdot \sin\theta \cdot \sin\varphi \\ -B_0 \cdot (\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2} \cdot \cos 2\varphi) \\ B_0 \cdot \sin^2\frac{\theta}{2} \cdot \sin 2\varphi \end{pmatrix}; \tag{26}$$

$$B_{x}(P) = \frac{2\pi}{\lambda} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot B_{0} \cdot I_{1}(r_{p}, \theta_{p}) \cdot \sin \varphi_{p}; \tag{27}$$

$$B_{y}(P) = -i \cdot \frac{2\pi}{\lambda} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot B_{0} \cdot \frac{\left(I_{0}\left(r_{p}, \theta_{p}\right) - I_{2}\left(r_{p}, \theta_{p}\right) \cdot \cos 2\varphi_{p}\right)}{2}; \tag{28}$$

$$B_z(P) = i \cdot \frac{2\pi}{\lambda} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot B_0 \cdot \frac{I_2(r_p, \theta_p)}{2} \cdot \sin 2\varphi_p, \tag{29}$$

где $I_0(r_p, \theta_p)$, $I_1(r_p, \theta_p)$, $I_2(r_p, \theta_p)$ определены выше (см. формулы (23), (24), (25)).

Радиальная поляризация

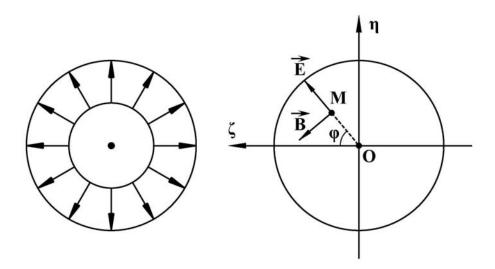


Рис. 11. Радиальная поляризация, направления колебаний вектора \vec{E} в лазерном пучке

Вектор напряженности в падающей волне есть $\vec{E} = \begin{pmatrix} 0 \\ E_0 \cdot sin\phi \\ E_0 \cdot cos\phi \end{pmatrix}$ (см. рис. 11.). Вычисляем вектор \vec{E}^* преломленной волны по формуле (16).

$$\vec{n}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{n}_1 = \begin{pmatrix} \cos\theta \\ -\sin\theta \cdot \sin\varphi \\ -\sin\theta \cdot \cos\varphi \end{pmatrix}, \vec{e} = \begin{pmatrix} 0 \\ \cos\varphi \\ -\sin\varphi \end{pmatrix};$$

$$\alpha = \arccos(\vec{n}_0 \cdot \vec{n}_1) = \arccos(\cos\theta) = \theta;$$

$$\vec{e} \cdot \vec{E} = 0, \ \vec{e} \times \vec{E} = \begin{pmatrix} E_0 \\ 0 \\ 0 \end{pmatrix}, \ \vec{e} \times (\vec{e} \times \vec{E}) = \begin{pmatrix} 0 \\ -E_0 \cdot \sin\varphi \\ -E_0 \cdot \cos\varphi \end{pmatrix}.$$

В результате получим:

$$\vec{E}^* = \begin{pmatrix} E_0 \cdot \sin\theta \\ E_0 \cdot \cos\theta \cdot \sin\varphi \\ E_0 \cdot \cos\theta \cdot \cos\varphi \end{pmatrix}. \tag{30}$$

Проводя преобразования интегральной формулы (15), аналогичные случаю линейно поляризованного излучения, получим:

$$E_{x}(P) = i \cdot \frac{2\pi}{\lambda} \cdot E_{0} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot R_{0}(r_{p}, \theta_{p}); \tag{31}$$

$$E_{y}(P) = -\frac{2\pi}{\lambda} \cdot E_{0} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot R_{1}(r_{p}, \theta_{p}) \cdot \sin \varphi_{p}; \tag{32}$$

$$E_z(P) = -\frac{2\pi}{\lambda} \cdot E_0 \cdot F \cdot e^{-i \cdot k \cdot F} \cdot R_1(r_p, \theta_p) \cdot \cos \varphi_p, \tag{33}$$

где

$$R_0(r_p, \theta_p) = \int_{\pi-\alpha}^{\pi} d\theta \sqrt{\cos\theta} \cdot \sin^2\theta \cdot e^{-i \cdot k \cdot r_p \cdot \cos\theta \cdot \cos\theta_p} \cdot J_0(k \cdot r_p \cdot \sin\theta_p \cdot \sin\theta); \tag{34}$$

$$R_{1}(r_{p},\theta_{p}) = \int_{\pi-\alpha}^{\pi} d\theta \sqrt{\cos\theta} \cdot \sin\theta \cdot \cos\theta \cdot e^{-i \cdot k \cdot r_{p} \cdot \cos\theta \cdot \cos\theta_{p}} \cdot J_{1}(k \cdot r_{p} \cdot \sin\theta_{p} \cdot \sin\theta). \tag{35}$$

Для магнитного поля вывод формул аналогичен, меняется лишь одно входное данное – вектор индукции магнитного поля в падающей волне (см. рис. 11):

$$\vec{B} = \begin{pmatrix} 0 \\ -B_0 \cdot \cos\varphi \\ B_0 \cdot \sin\varphi \end{pmatrix}.$$

В результате получаем:

$$\vec{B}^* = \begin{pmatrix} 0 \\ -B_0 \cdot \cos\varphi \\ B_0 \cdot \sin\varphi \end{pmatrix}; \tag{36}$$

$$B_{\chi}(P) = 0; (37)$$

$$B_{y}(P) = \frac{2\pi}{\lambda} \cdot B_{0} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot A(r_{p}, \theta_{p}) \cdot \cos \varphi_{p}; \tag{38}$$

$$B_z(P) = -\frac{2\pi}{\lambda} \cdot B_0 \cdot F \cdot e^{-i \cdot k \cdot F} \cdot A(r_p, \theta_p) \cdot \sin \varphi_p, \tag{39}$$

где

$$A(r_p, \theta_p) = \int_{\pi-\alpha}^{\pi} d\theta \cdot \sqrt{|\cos\theta|} \cdot \sin\theta \cdot e^{-i \cdot k \cdot r_p \cdot \cos\theta_p \cdot \cos\theta} \cdot J_1(k \cdot r_p \cdot \sin\theta_p \cdot \sin\theta). \tag{40}$$

Азимутальная поляризация.

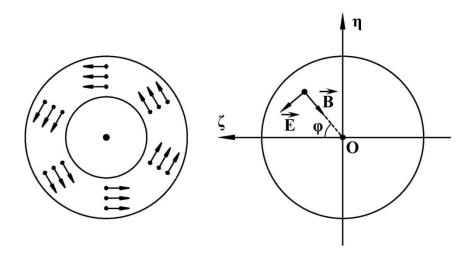


Рис. 12. Азимутальная поляризация, направления колебаний вектора \vec{E} в лазерном пучке

Вектор напряженности в падающей волне есть $\vec{E} = \begin{pmatrix} 0 \\ -E_0 \cdot cos \varphi \\ E_0 \cdot sin \varphi \end{pmatrix}$ (см. рис. 12). Вычисляем вектор \vec{E}^* преломленной волны по формуле (16).

Величины, необходимые для вычисления:

$$\vec{n}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{q} = \begin{pmatrix} \cos\theta \\ -\sin\theta \cdot \sin\phi \\ -\sin\theta \cdot \cos\phi \end{pmatrix}, \vec{e} = \begin{pmatrix} 0 \\ \cos\phi \\ -\sin\phi \end{pmatrix};$$

$$\alpha = \arccos(\vec{n}_0 \cdot \vec{n}_1) = \arccos(\cos\theta) = \theta;$$

$$\vec{e} \cdot \vec{E} = -E_0, \, \vec{e} \times \vec{E} = 0, \, \vec{e} \times (\vec{e} \times \vec{E}) = 0.$$

В результате получим:

$$\vec{E}^* = \begin{pmatrix} 0 \\ -E_0 \cdot \cos\varphi \\ E_0 \cdot \sin\varphi \end{pmatrix}. \tag{41}$$

Проводя преобразования интегральной формулы (15), аналогичные случаю линейно поляризованного излучения, получим:

$$E_{r}(P) = 0; (42)$$

$$E_{y}(P) = \frac{2\pi}{\lambda} \cdot E_{0} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot A(r_{p}, \theta_{p}) \cdot \cos \varphi_{p}; \tag{43}$$

$$E_z(P) = -\frac{2\pi}{\lambda} \cdot E_0 \cdot F \cdot e^{-i \cdot k \cdot F} \cdot A(r_p, \theta_p) \cdot \sin \varphi_p, \tag{44}$$

где $A(r_p, \theta_p)$ определено выше (см. формулу (40)).

Для магнитного поля вывод формул аналогичен, меняется лишь одно входное данное – вектор индукции магнитного поля в падающей волне:

$$\vec{B} = \begin{pmatrix} 0 \\ -B_0 \cdot \sin\varphi \\ -B_0 \cdot \cos\varphi \end{pmatrix}.$$

В результате получаем:

$$\vec{B}^* = \begin{pmatrix} -B_0 \cdot \sin\theta \\ -B_0 \cdot \cos\theta \cdot \sin\varphi \\ -B_0 \cdot \cos\theta \cdot \cos\varphi \end{pmatrix}; \tag{45}$$

$$B_{x}(P) = -i \cdot \frac{2\pi}{\lambda} \cdot B_{0} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot R_{0}(r_{p}, \theta_{p}); \tag{46}$$

$$B_{y}(P) = \frac{2\pi}{\lambda} \cdot B_{0} \cdot F \cdot e^{-i \cdot k \cdot F} \cdot R_{1}(r_{p}, \theta_{p}) \cdot \sin \varphi_{p}; \tag{47}$$

$$B_z(P) = \frac{2\pi}{\lambda} \cdot B_0 \cdot F \cdot e^{-i \cdot k \cdot F} \cdot R_1(r_p, \theta_p) \cdot \cos \varphi_p, \tag{48}$$

где $R_0(r_p, \theta_p)$ и $R_1(r_p, \theta_p)$ (см. формулы (34), (35)).

Результаты расчетов Электрическое поле.

Для распределений $E_x(x=0,y,z), E_y(x=0,y,z), E_z(x=0,y,z)$ (так же как и для $B_x(x=0,y,z), B_y(x=0,y,z), B_z(x=0,y,z)$) характерно наличие одного, двух или четырех главных максимумов (в зависимости от типа поляризации падающего излучения). Объяснение этому дается в приложениях A и Б. Доля интенсивности, приходящаяся на отдельную компоненту поля $E_\alpha(x,y,z)$ ($\alpha=x,y,z$) зависит от апертурного угла линзы $\alpha=\arcsin\left(\frac{D}{2\cdot F}\right)$ и типа поляризации падающего излучения.

Линейная поляризация падающего излучения.

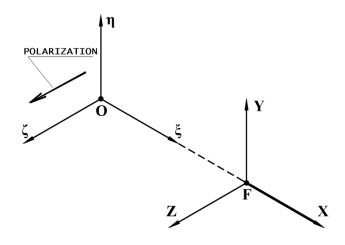


Рис. 13. Направление поляризации в падающей волне совпадает по направлению с осью $O\zeta$ (и FZ)

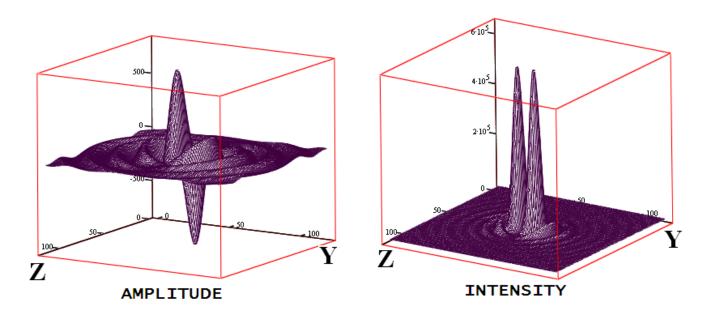


Рис. 14. Продольная компонента ОХ электрического поля. Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности составляет $\frac{max I_{ox}}{max I_{\Sigma}} \cong 10^{-3}$.

Максимумы интенсивности расположены в точках
$$\begin{pmatrix} x=0\\y=0\\z\cong -2\lambda \end{pmatrix}$$
, $\begin{pmatrix} x=0\\y=0\\z\cong +2\lambda \end{pmatrix}$

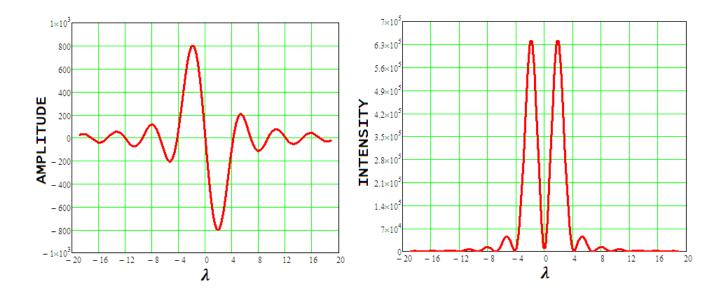


Рис. 15. Продольная компонента ОХ электрического поля. Сечение в главных максимумах. В фокусе F продольная компонента поля электрического поля равна нулю.

Ширина главных максимумов интенсивности $\cong \frac{2\lambda}{D}$

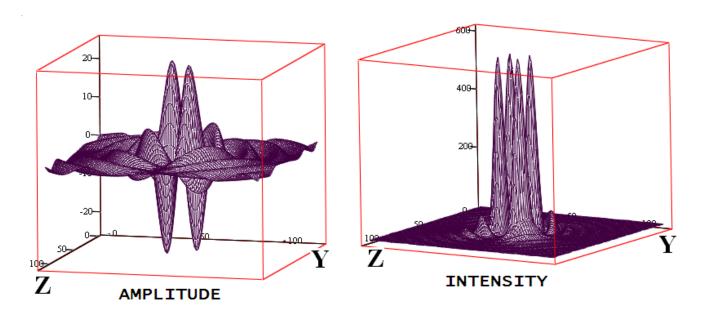


Рис. 16. Поперечная компонента ОУ электрического поля (перпендикулярна направлению поляризации падающего излучения). Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности составляет $\frac{maxI_{oy}}{maxI_{\Sigma}} \cong 10^{-5}$. Максимумы интенсивности

расположены в точках
$$\begin{pmatrix} x=0\\y\cong 2\cdot\lambda\\z\cong 2\cdot\lambda \end{pmatrix}$$
, $\begin{pmatrix} x=0\\y\cong 2\cdot\lambda\\z\cong -2\cdot\lambda \end{pmatrix}$, $\begin{pmatrix} x=0\\y\cong -2\cdot\lambda\\z\cong 2\cdot\lambda \end{pmatrix}$, $\begin{pmatrix} x=0\\y\cong -2\cdot\lambda\\z\cong 2\cdot\lambda \end{pmatrix}$

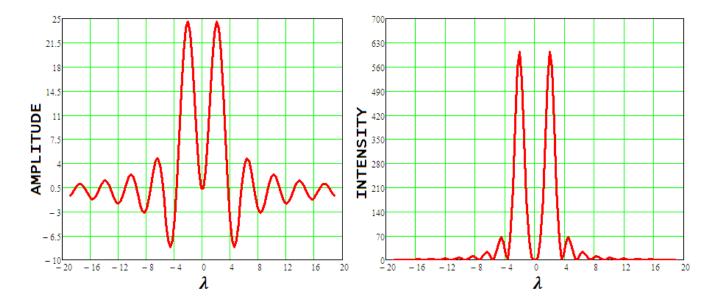


Рис. 17. Поперечная компонента ОУ электрического поля (диагональное сечение). Ширина главных максимумов интенсивности $\cong \frac{2 \cdot \lambda}{D}$, ширина провала между ними $\cong \frac{4 \cdot \lambda}{D}$

В распределении $E_y(y,z)$ есть четыре главных максимума: два из них (расположенные на одной диагонали в плоскости YZ) синфазны, а два других (на другой диагонали в плоскости YZ) противофазны им. В фокусе F $E_y(y,z)=0$.

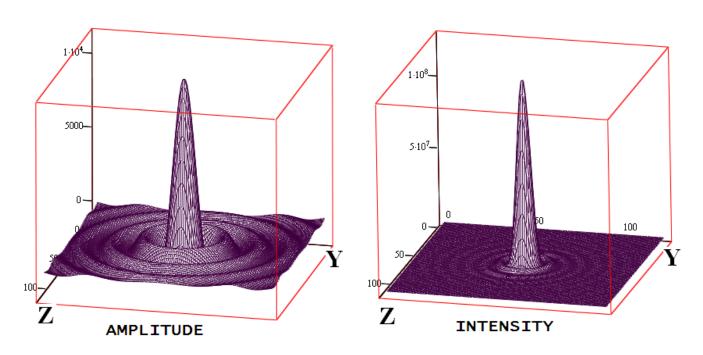


Рис. 18. Поперечная компонента OZ электрического поля (совпадает с направлением поляризации падающего излучения). Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности составляет $\frac{maxI_{oz}}{maxI_{\Sigma}} \cong 1$.

Главный максимум интенсивности расположен в точке
$$\begin{pmatrix} x=0\\y=0\\z=0 \end{pmatrix}$$

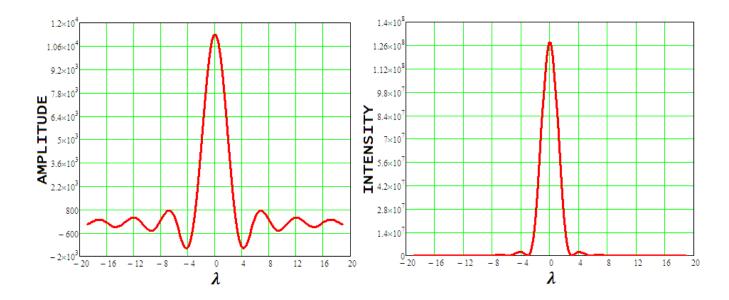


Рис. 19. Поперечная компонента OZ электрического поля. Сечение в главном максимуме

В распределении $E_z(y,z)$ есть один центральный максимум. Ширина главного максимума интенсивности составляет $\frac{4\lambda}{D}$.

Радиальная поляризация.

В распределении интенсивности $I_{ox}=E_x^2(x=0,y,z)$, приходящейся на продольную компоненту поля — один главный максимум, расположенный в фокусе. Структура распределений интенсивностей $I_{oy}=E_y^2(x=0,y,z)$ и $I_{oz}=E_z^2(x=0,y,z)$, приходящихся на поперечные компоненты поля, одинакова (в фокусе поле равно нулю, угловая ширина провала $\cong \frac{2\cdot\lambda}{D}$), но картины распределений «повернуты» на $\frac{\pi}{2}$ друг относительно друга.

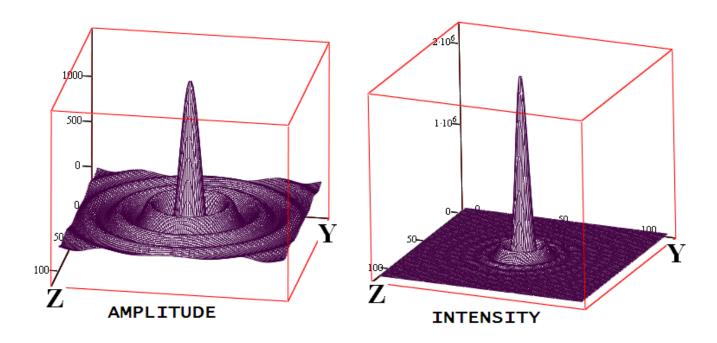


Рис. 20. Продольная компонента ОХ электрического поля. Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности составляет $\frac{maxl_{ox}}{maxl_{\Sigma}} \cong 10^{-1}$.

Главный максимум интенсивности расположен в точке
$$\begin{pmatrix} x=0\\y=0\\z=0 \end{pmatrix}$$

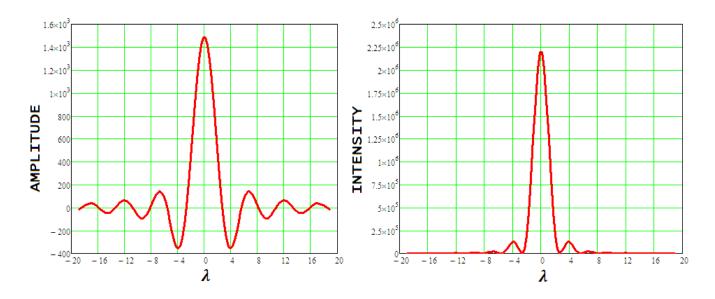


Рис. 21. Продольная компонента ОХ электрического поля. Сечение в главном максимуме. Ширина главного максимума интенсивности составляет $\cong \frac{4 \cdot \lambda}{D}$

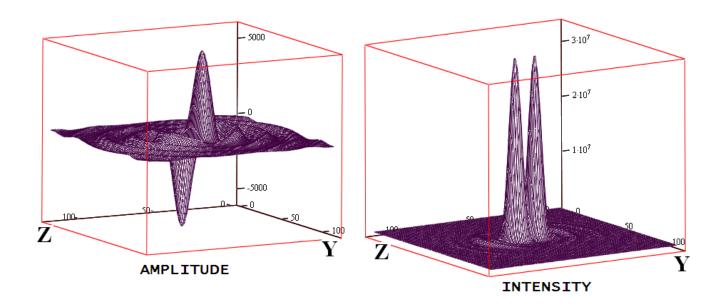


Рис. 22. Поперечная компонента ОУ электрического поля. Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности составляет $\frac{maxI_{oy}}{maxI_{\Sigma}}\cong 1$.

Главные максимумы интенсивности расположены в точках $\begin{pmatrix} x=0\\y=0\\z\cong -2\cdot\lambda\end{pmatrix}$, $\begin{pmatrix} x=0\\y=0\\z\cong 2\cdot\lambda\end{pmatrix}$

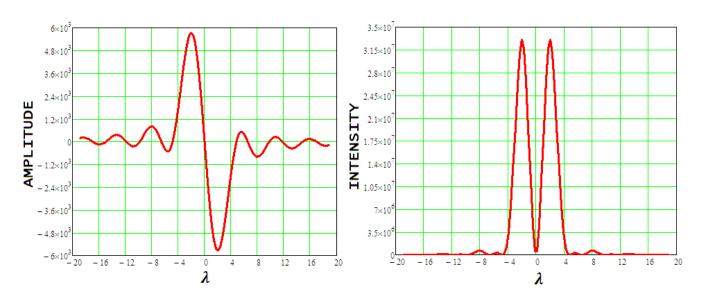


Рис. 23. Поперечная компонента ОУ электрического поля. Сечение в главных максимумах. Ширина главных максимумов интенсивности составляет $\cong \frac{2\cdot\lambda}{D}$

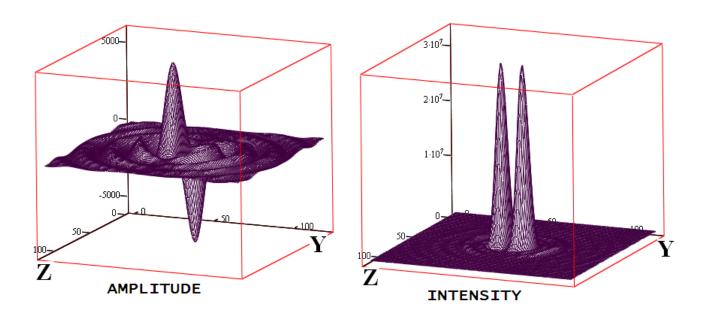


Рис. 24. Поперечная компонента OZ электрического поля. Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности составляет $\frac{maxI_{oz}}{maxI_{\Sigma}} \cong 1$.

Главные максимумы интенсивности расположены в точках
$$\begin{pmatrix} x=0\\y\cong -2\cdot\lambda\\z=0\end{pmatrix}$$
, $\begin{pmatrix} x=0\\y\cong 2\cdot\lambda\\z=0\end{pmatrix}$

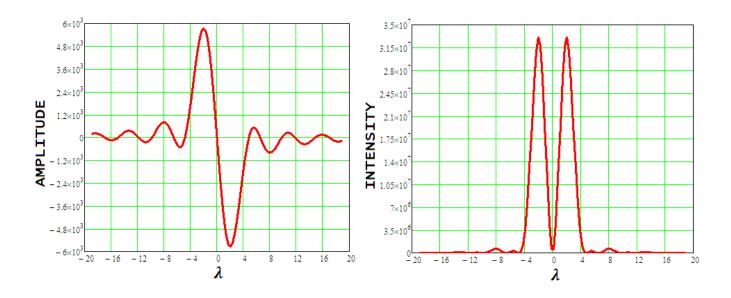


Рис. 25. Поперечная компонента OZ электрического поля. Сечение в главных максимумах. Ширина главных максимумов интенсивности составляет $\cong \frac{2 \cdot \lambda}{D}$

Азимутальная поляризация излучения.

Вблизи фокуса продольная компонента поля $E_x(x=0,y,z)=0$. Структура распределений интенсивностей $I_{oy}=E_y^2(x=0,y,z)$ и $I_{oz}=E_z^2(x=0,y,z)$, приходящихся на поперечные компоненты поля, одинакова (в фокусе поле равно нулю, угловая ширина провала $\cong \frac{2\cdot \lambda}{D}$), но картины распределений «повернуты» на $\frac{\pi}{2}$ друг относительно друга.

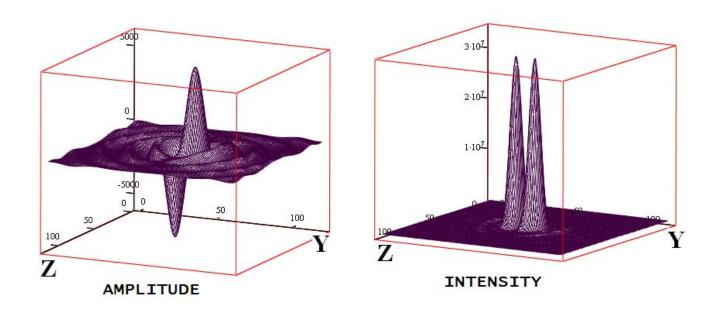


Рис. 26. Поперечная компонента ОУ электрического поля. Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности составляет $\frac{maxI_{oy}}{maxI_{\Sigma}} \cong 1$.

Главные максимумы интенсивности расположены в точках
$$\begin{pmatrix} x=0\\ y\cong -2\cdot\lambda\\ z=0 \end{pmatrix}$$
, $\begin{pmatrix} x=0\\ y\cong 2\cdot\lambda\\ z=0 \end{pmatrix}$

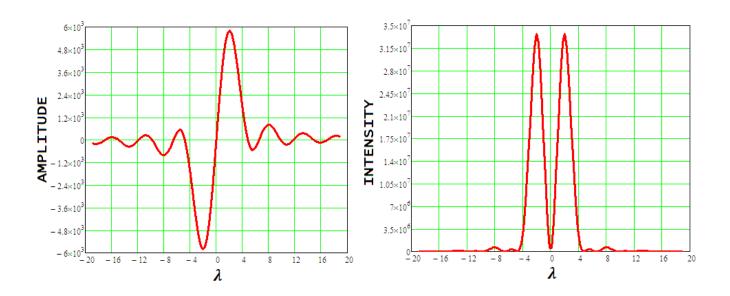


Рис. 27. Поперечная компонента ОУ электрического поля. Сечение в главных максимумах.

Ширина главных максимумов интенсивности составляет $\cong \frac{2 \cdot \lambda}{D}$. Ширина провала в фокусе $\cong \frac{2 \cdot \lambda}{D}$

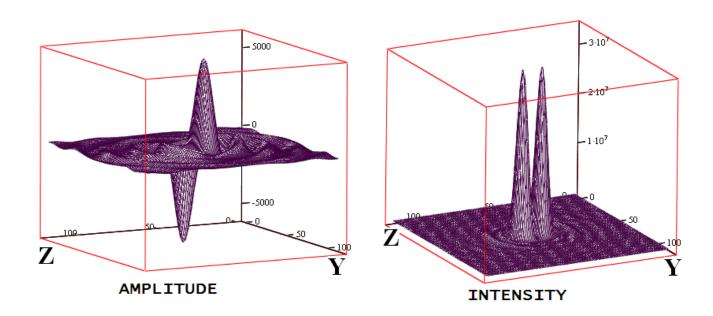


Рис. 28. Поперечная компонента OZ электрического поля. Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности составляет $\frac{maxI_{oz}}{maxI_{\Sigma}}\cong 1$.

Главные максимумы интенсивности расположены в точках
$$\begin{pmatrix} x=0\\y=0\\z\cong -2\cdot\lambda \end{pmatrix}$$
, $\begin{pmatrix} x=0\\y=0\\z\cong 2\cdot\lambda \end{pmatrix}$

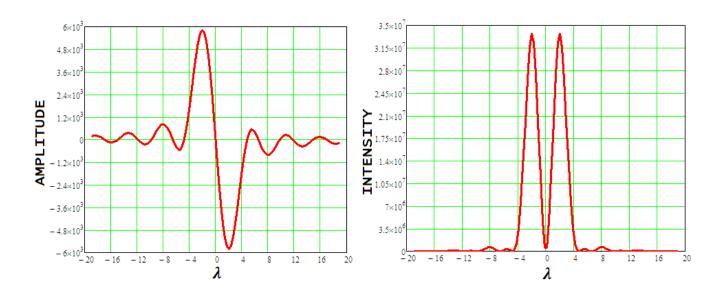


Рис. 29. Поперечная компонента OZ электрического поля. Сечение в главных максимумах. Ширина главных максимумов интенсивности составляет $\cong \frac{2 \cdot \lambda}{D}$. Ширина провала в фокусе $\cong \frac{2 \cdot \lambda}{D}$

Результаты расчетов Магнитноеполе.

Так как в электромагнитной волне вектор \vec{B} «повернут» относительно вектора \vec{E} на $\frac{\pi}{2}$ вокруг волнового вектора \vec{k} , то структура распределений $B_{\alpha}(x,y,z)$ ($\alpha=x,y,z$) такая же, как и у $E_{\beta}(x,y,z)$ ($\beta=x,y,z$). Например, для линейно поляризованного падающего излучения: распределение $B_{x}(x=0,y,z)$ имеет такую же структуру, как и $E_{x}(x=0,y,z)$, только картины распределений «повернуты» на $\frac{\pi}{2}$ друг относительно друга; $B_{y}(x=0,y,z)$ имеет такую же структуру, как и $E_{z}(x=0,y,z)$; $B_{z}(x=0,y,z)$ имеет такую же структуру, как и $E_{y}(x=0,y,z)$.

Линейная поляризация падающего излучения.

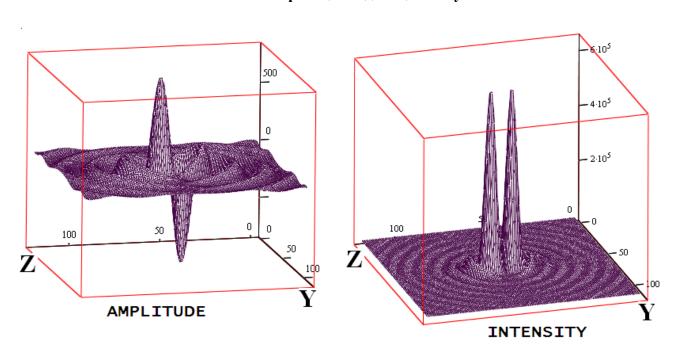


Рис. 30. Продольная компонента ОХ магнитного поля. Отношение значения интенсивности в главных максимумах к максимуму суммарной интенсивности: $\frac{I_{ox}}{I_{\Sigma}} \cong 10^{-3}$.

Максимумы интенсивности расположены в точках
$$\begin{pmatrix} x=0\\y=0\\z\cong -2\cdot\lambda \end{pmatrix}$$
, $\begin{pmatrix} x=0\\y=0\\z\cong 2\cdot\lambda \end{pmatrix}$

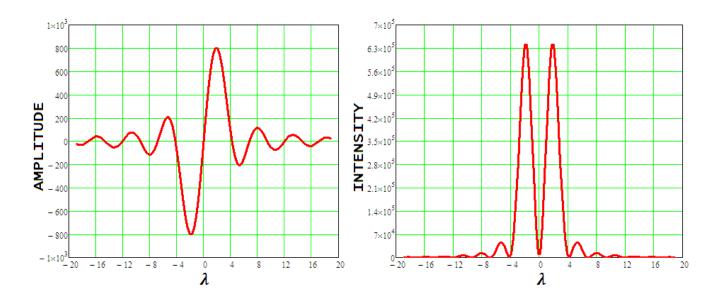


Рис. 31. Продольная компонента ОХ магнитного поля. Сечения в главных максимумах. В фокусе F продольная компонента магнитного поля равна нулю. Ширина главных максимумов интенсивности $\cong \frac{2 \cdot \lambda}{D}$, ширина провала в фокусе $\cong \frac{2 \cdot \lambda}{D}$

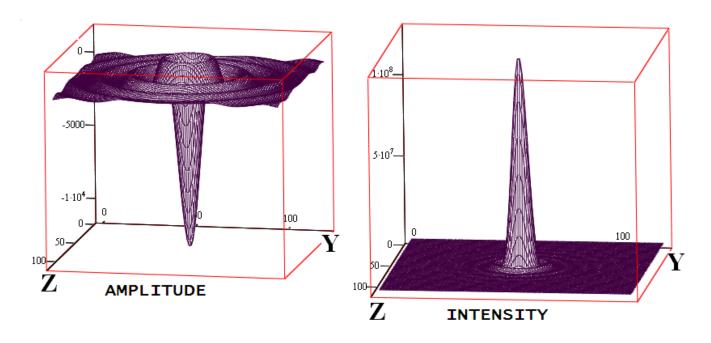


Рис. 32. Поперечная компонента ОУ магнитного поля. Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности: $\frac{l_{oy}}{l_{\Sigma}} \cong 1$.

Максимум интенсивности расположен в точке
$$\begin{pmatrix} x=0\\y=0\\z=0 \end{pmatrix}$$

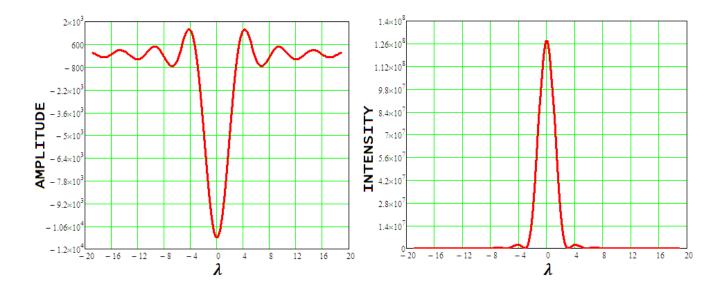


Рис. 33. Поперечная компонента ОУ магнитного поля. Сечение в главном максимуме. Ширина максимума интенсивности $\cong \frac{4\cdot \lambda}{D}$

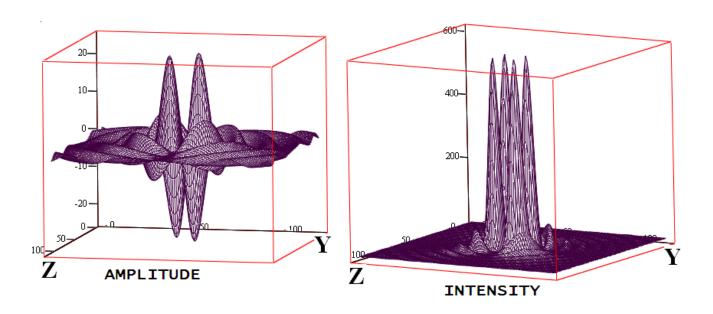


Рис. 34. Поперечная компонента OZ магнитного поля. Отношение значения интенсивности в главных максимумах к максимуму суммарной интенсивности: $\frac{I_{oz}}{I_{\Sigma}} \cong 10^{-5}$. Максимумы

интенсивности расположены в точках
$$\begin{pmatrix} x=0\\y\cong 2\cdot\lambda\\z\cong 2\cdot\lambda \end{pmatrix}$$
, $\begin{pmatrix} x=0\\y\cong 2\cdot\lambda\\z\cong -2\cdot\lambda \end{pmatrix}$, $\begin{pmatrix} x=0\\y\cong -2\cdot\lambda\\z\cong 2\cdot\lambda \end{pmatrix}$, $\begin{pmatrix} x=0\\y\cong -2\cdot\lambda\\z\cong 2\cdot\lambda \end{pmatrix}$

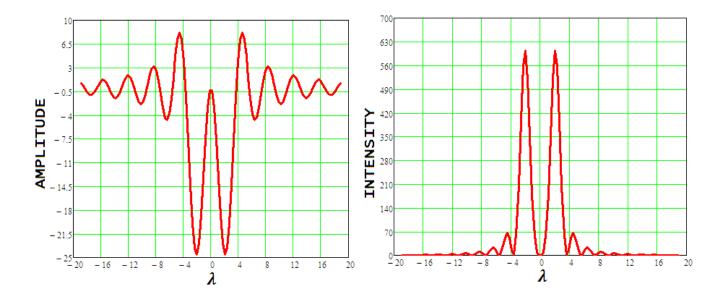


Рис. 35. Поперечная компонента OZ магнитного поля. Диагональное сечение в главных максимумах. В фокусе F $B_z=0$, ширина провала $\cong \frac{4\cdot \lambda}{D}$; ширина максимумов интенсивности $\cong \frac{2\cdot \lambda}{D}$

Радиальная поляризация падающего излучения.

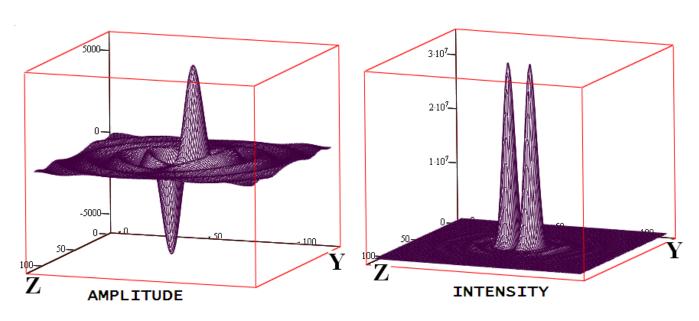


Рис. 36. Поперечная компонента ОУ магнитного поля. Отношение значения интенсивности в главных максимумах к максимуму суммарной интенсивности: $\frac{I_{oy}}{I_{\Sigma}} \cong 1$.

Максимумы интенсивности расположены в точках
$$\begin{pmatrix} x=0\\y\cong -2\cdot\lambda\\z=0\end{pmatrix}$$
, $\begin{pmatrix} x=0\\y\cong 2\cdot\lambda\\z=0\end{pmatrix}$

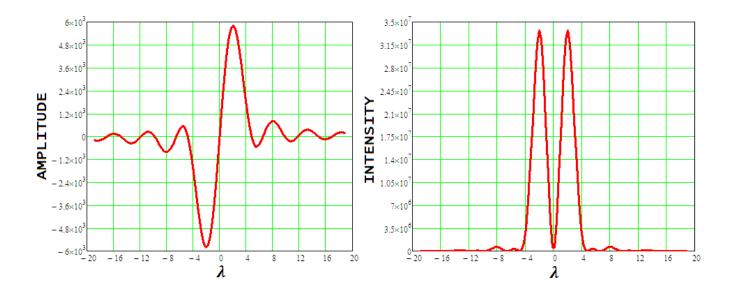


Рис. 37. Поперечная компонента ОУ магнитного поля. Сечение в главном максимуме. В фокусе F $B_y=0$, ширина провала $\cong \frac{2\cdot \lambda}{D}$; ширина максимумов интенсивности $\cong \frac{2\cdot \lambda}{D}$

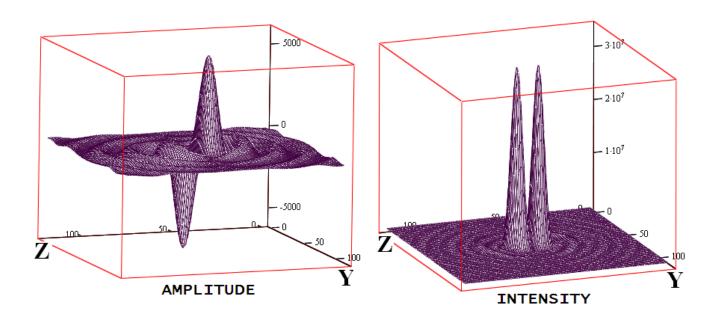


Рис. 38. Поперечная компонента OZ магнитного поля. Отношение значения интенсивности в главных максимумах к максимуму суммарной интенсивности: $\frac{I_{oz}}{I_{\Sigma}} \cong 1$.

Максимумы интенсивности расположены в точках
$$\begin{pmatrix} x=0\\y=0\\z\cong -2\cdot\lambda \end{pmatrix}$$
, $\begin{pmatrix} x=0\\y=0\\z\cong 2\cdot\lambda \end{pmatrix}$

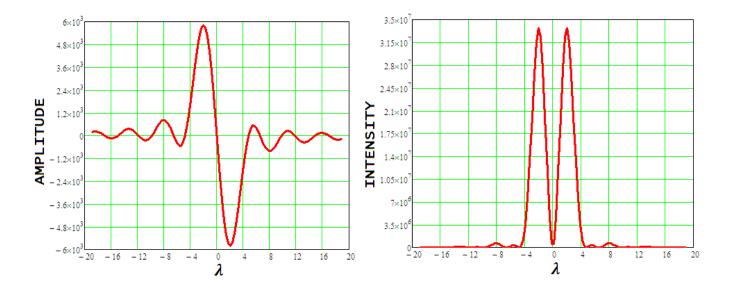


Рис. 39. Поперечная компонента OZ магнитного поля. Сечения в главных максимумах. В фокусе F $B_z=0$, ширина провала $\cong \frac{2\cdot \lambda}{D}$; ширина максимумов интенсивности $\cong \frac{2\cdot \lambda}{D}$

Азимутальная поляризация падающего излучения.

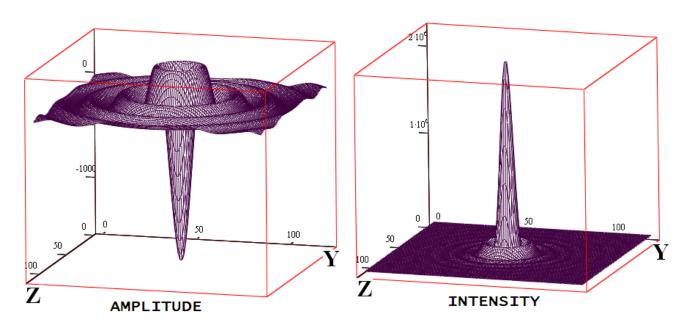


Рис. 40. Продольная компонента ОХ магнитного поля. Отношение значения интенсивности в главном максимуме к максимуму суммарной интенсивности: $\frac{I_{ox}}{I_{\Sigma}} \cong 10^{-1}$.

Максимум интенсивности расположен в точке
$$\begin{pmatrix} x = 0 \\ y = 0 \\ z = 0 \end{pmatrix}$$

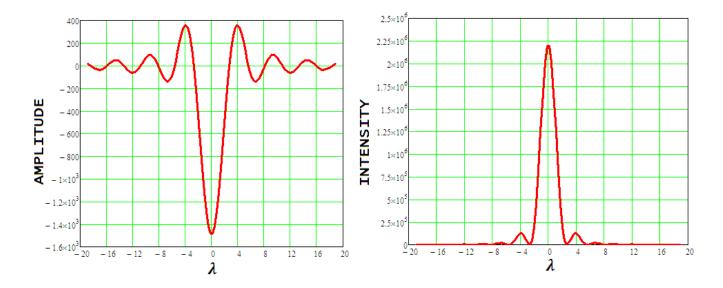


Рис. 41. Продольная компонента ОХ магнитного поля. Сечение в главном максимуме. Ширина максимума интенсивности $\cong \frac{4\cdot \lambda}{D}$

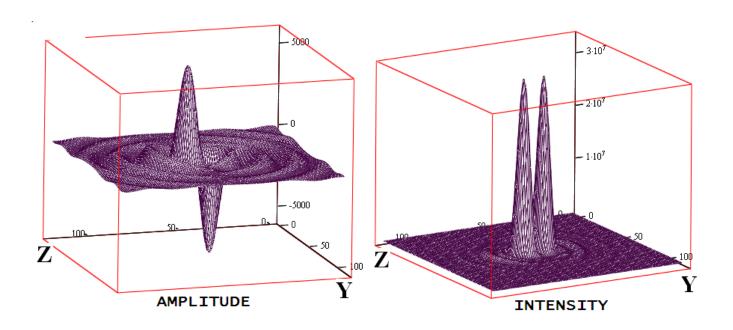


Рис. 42. Поперечная компонента ОУ магнитного поля. Отношение значения интенсивности в главных максимумах к максимуму суммарной интенсивности: $\frac{I_{oy}}{I_{\Sigma}} \cong 1$.

Максимумы интенсивности расположены в точках
$$\begin{pmatrix} x=0\\y=0\\z\cong -2\cdot\lambda \end{pmatrix}$$
, $\begin{pmatrix} x=0\\y=0\\z\cong 2\cdot\lambda \end{pmatrix}$

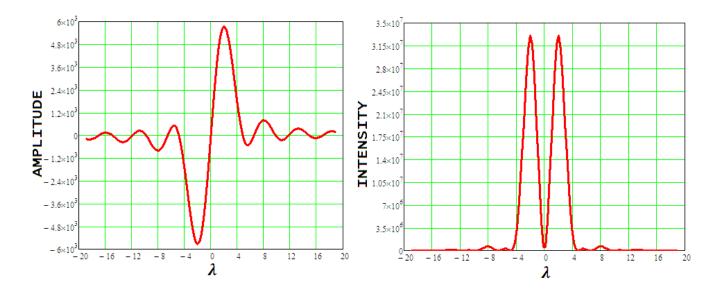


Рис. 43. Поперечная компонента ОУ магнитного поля. Сечение в главных максимумах. В фокусе F $B_y=0$, ширина провала $\cong \frac{2\cdot\lambda}{D}$; ширина максимумов интенсивности $\cong \frac{2\cdot\lambda}{D}$

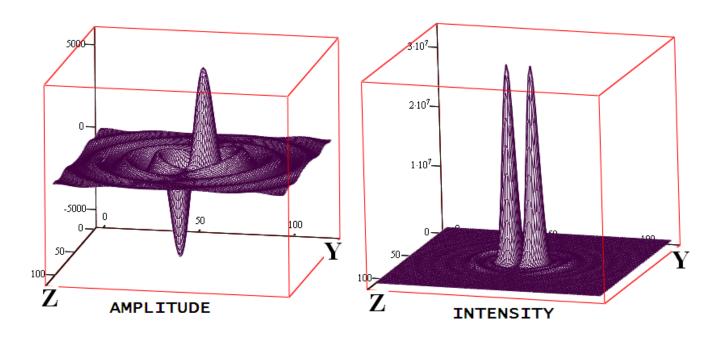


Рис. 44. Поперечная компонента OZ магнитного поля. Отношение значения интенсивности в главных максимумах к максимуму суммарной интенсивности: $\frac{I_{oz}}{I_{\Sigma}}\cong 1$.

Максимумы интенсивности расположены в точках
$$\begin{pmatrix} x=0\\y\cong -2\cdot\lambda\\z=0\end{pmatrix}$$
, $\begin{pmatrix} x=0\\y\cong 2\cdot\lambda\\z=0\end{pmatrix}$

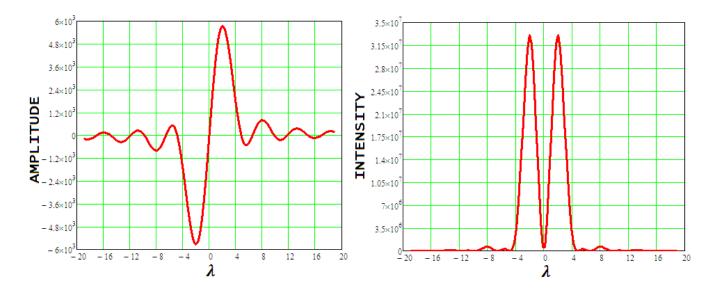


Рис. 45. Поперечная компонента OZ магнитного поля. Сечение в главных максимумах. В фокусе F $B_z=0$, ширина провала $\cong \frac{2\cdot \lambda}{D}$; ширина максимумов интенсивности $\cong \frac{2\cdot \lambda}{D}$

Сравнениеметодов расчета.

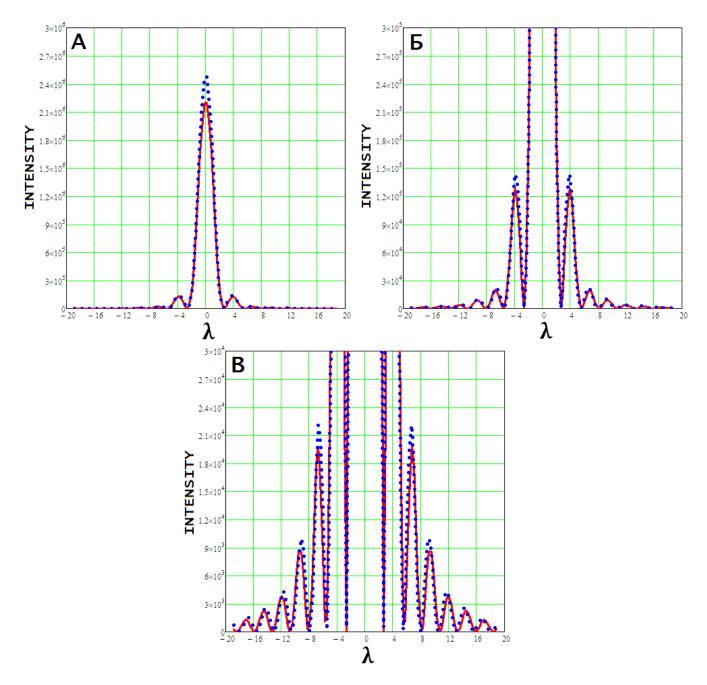


Рис. 46. Распределение интенсивности, приходящейся на продольную компоненту E_{x} поля в фокальной плоскости. Падающее излучение радиально поляризовано. Сплошная линия — расчет по Кирхгофу, точки — расчет по Дебаю. А), Б), В) — одно и то же распределение, но в разных интервалах изменения интенсивности.

На рис. 46 приведено сравнение результатов расчета интенсивности, приходящейся на продольную компоненту E_x поля в фокальной плоскости (радиальная поляризация падающего излучения). Присутствуют небольшие относительные различия в максимумах распределения.

В целом, результаты, полученные двумя методами расчета, структурно практически совпадают в пределах десятков длин волн (размер области, в которой производится расчет).

Расчет по методу Кирхгофа даже для областей наблюдения малых размеров (единицы длины волны) требует значительного машинного времени, примерно в 60 раз больше, чем по методу Дебая (для всех трех типов поляризации).

$$\frac{T_{Debye}}{T_{Kirchoff}} \cong \frac{1}{60}.$$

Модельмногомодового поля. Сравнение расчетов сэкспериментом.

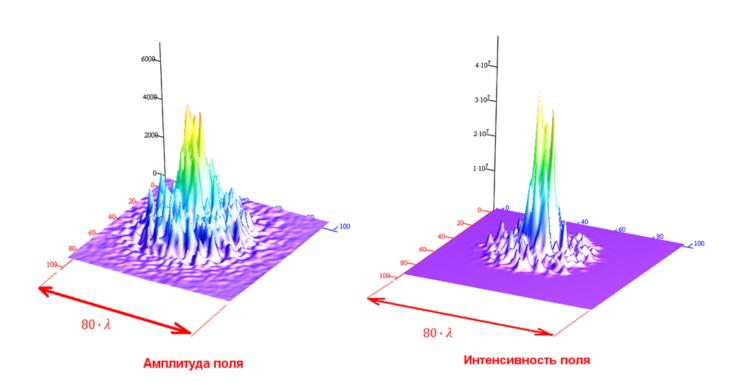


Рис. 47. Распределение многомодового поля в фокусе линзы. Расчет по методу Кирхгофа

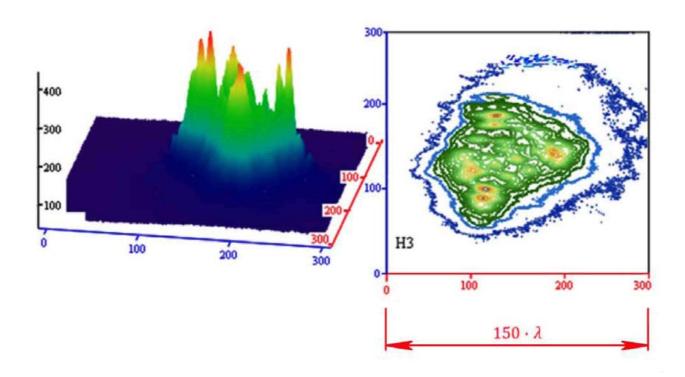


Рис. 48. Распределение поля Nd – лазера в фокусе линзы. Экспериментальные данные

На (Рис. 47.) приведен результат расчета по методу Кирхгофу дифракционной картины в фокусе линзы. Модель падающего на линзу лазерного импульса (данная модель поля описана в работе [8]): поле представляет собой 90 плоских волн со случайным углом между волновыми векторами \vec{k} (в пределах от 0 до $4 \cdot \frac{\lambda}{D}$, где $\lambda = 1.06$ мкм, D = 4см.); падающее излучение состоит из нескольких частотных компонент. Временная форма лазерного импульса описывается огибающей:

$$\delta(t) = \left(1 - \frac{t}{\tau}\right) \cdot \frac{t}{\tau} \tag{49}$$

где τ - длительность импульса.

Многокомпонентный спектр лазерного импульса апроксимируется функцией:

$$f(j) = \left(1 - \frac{j}{N_L}\right) \cdot \frac{j}{N_L} \tag{50}$$

где j – номер компоненты, N_L - количество компонент.

К примеру, излучение Nd – лазера обычно состоит из 12 компонент. Однако в данной работе рассматриваются только 4 компоненты с целью упрощения и ускорения расчетов. Фазовый множитель каждой компоненты имеет вид:

$$f_e(j,t) = \exp\left\{i \cdot \left[\omega_0 \cdot \left(1 + \left(\frac{\Delta n_{\lambda}}{n_{\lambda}}\right) \cdot \left(j - \frac{N_L}{2}\right) \cdot \left(t - \frac{\tau}{2}\right) - \Phi_j\right)\right]\right\} \cdot f(j)$$
 (51)

где ω_0 - частота в максимуме спектральной линии, n_λ - число периодов в импульсе длительностью τ , Δn_λ - выраженный в количестве периодов частотный интервал между соседними эквидистантными компонентами, Φ_i - случайная фаза.

Таким образом, получаем следующие выражения для напряженностей поля:

$$\vec{E}(\vec{r},t) = \overrightarrow{A_0}(\vec{r}) \cdot \sum_{q}^{N} \left[\left(\sum_{j=0}^{N_L} f_e(j,t) \right) \cdot e^{-i \cdot \overrightarrow{k_q} \cdot \vec{r}} \right] \cdot \delta(t) \cdot e^{i \cdot \psi(t)}$$
(52)

$$\vec{H}(\vec{r},t) = \overrightarrow{A_0}(\vec{r}) \cdot \sum_{q}^{N} \left[\left(\sum_{j=0}^{N_L} f_e(j,t) \right) \cdot e^{-i \cdot \overrightarrow{k_q} \cdot \vec{r}} \right] \cdot \delta(t) \cdot e^{i \cdot \psi(t)}$$
(53)

где N — число угловых мод со случайным направлением волнового вектора $\overrightarrow{k_q}$, $\overrightarrow{A_0}(\overrightarrow{r})$ — нормированная амплитуда поля согласно формуле (15); $\psi(t)$ - случайная функция.

На (Рис. 47) приведен пример распределения интенсивности в фокусе, рассчитанного с использованием приведенного в предыдущих разделах аппарата скалярной теории. Экспериментальные данные распределения интенсивности в фокусе приведены на (Рис. 48). Характерно то же наличие множества пиков в распределении интенсивности, что свидетельствует о правильном представлении об излучении Nd — лазера как о поле, модель которого описана выше. Для распределения поля в фокусе характерно наличие множества пиков интенсивности. На основании статистического сравнения экспериментальных распределений с расчетными выведены формулы (52) и (53) для распределения полей и сконструирована модель волнового пакета. Рассмотренная модель распределения электромагнитного поля в волновом пакете фокусируемого импульсного лазерного излучения многомодового неодимового лазера полезна для анализа процессов нагрева и ускорения электронов в корональной области лазерной плазмы, образующейся при нагреве твердотельной мишени. Полученные в данной работе аналитические выражения для структуры полей в фокальной области использовались в работе [12] для расчета функции распределения релятивистских электронов в лазерной плазме при стохастическом нагреве.

Приложение А.

Объяснение структуры распределения $E_x(x=0,y,z)$ продольной компоненты поля в случае линейной поляризации падающего излучения.

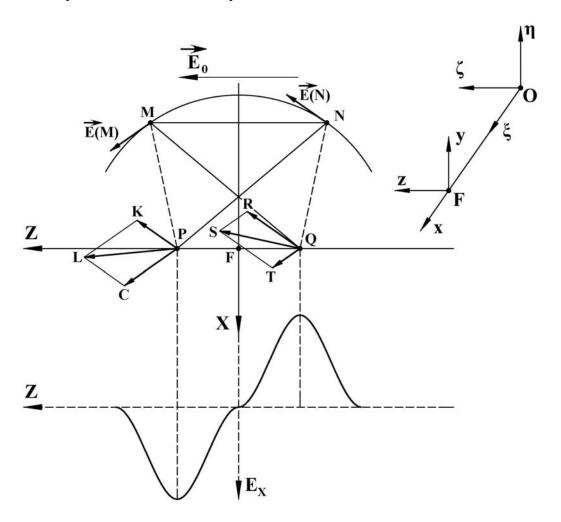


Рис. A-1. Сечение сферического волнового фронта, сформированного линзой, плоскостью $\zeta O \xi$

Рассмотрим сечение сферического волнового фронта, сформированного линзой, плоскостью $\zeta O \xi$ (рис. A-1). Выберем на волновом фронте точки М и N, симметричные относительно оси $O \xi$. Падающее излучение поляризовано вдоль оси $O \zeta$: вектор \vec{E}_0 на рис. A-1. Идеальная линза преобразует (поворачивает) вектор \vec{E}_0 так, что в точках М и N он будет направлен по касательной к окружности Σ .

Далее, выберем в фокальной плоскости ZY две точки, симметричные относительно оси ОХ, которые принадлежат оси ОZ: $P(x=0,y=0,+z_0)$ и $Q(x=0,y=0,-z_0)$, где $z_0\cong \lambda$. Найдем результирующий вектор электрического поля \vec{E} в точках P и Q. Для этого найдем векторную сумму напряженностей от вторичных источников M и N в выбранных точках фокальной плоскости.

В точке P: поле от вторичного источника N обозначим \overrightarrow{PK} . $\overrightarrow{PK}||\overrightarrow{E}(N), |\overrightarrow{PK}| < |\overrightarrow{E}(N)|$ (т.к. рассматриваются сферические волны от вторичных источников, амплитуда которых убывает как $\frac{1}{r}$). Поле от вторичного источника M обозначим \overrightarrow{PC} . $\overrightarrow{PC}||\overrightarrow{E}(M), |\overrightarrow{PC}| < |\overrightarrow{E}(M)|$ и, кроме того, $|\overrightarrow{PC}| > |\overrightarrow{PK}|$, т.к. MD < NP. Результирующий вектор напряженности поля \overrightarrow{PL} будет иметь положительную проекцию на ось OX (см. рис. A-1).

Совершенно аналогичные рассуждения для точки Q приводят к выводу о том, что проекция результирующего вектора напряженности поля \overrightarrow{QS} на ось OX будет отрицательной.

В точке F проекция результирующего вектора электрического поля на ось ОХ будет равна нулю, т.к. MF = NF. Структура распределения $E_x(z)$ показана на рис. A-1 внизу.

Приложение Б

Объяснение структуры распределения $E_y(x=0,y,z)$ (компонента поля, перпендикулярная направлению поляризации) в случае линейной поляризации падающего излучения.

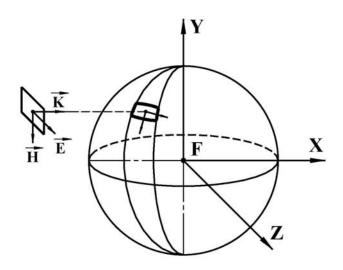


Рис. Б-1. Преломление электромагнитной волны на линзе

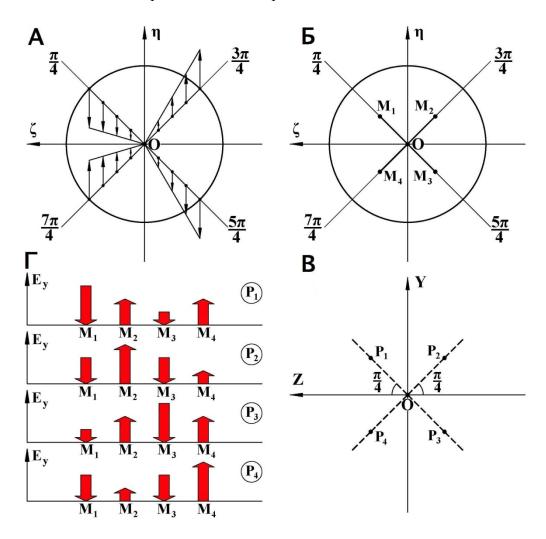


Рис. Б-2. К объяснению наличия четырех пиков в распределении поля

Идеальная линза преобразует плоский фронт падающего излучения в сферический, в каждой точке которого вектор напряженности \vec{E} имеет различные проекции на оси X, Y и Z (Рис. Б-1.). Выясним, в каких точках сферического волнового фронта проекция E_y имеет максимальное и минимальное значения.

После преломления линзой вектор $\vec{E}_0 = \begin{pmatrix} 0 \\ 0 \\ E_0 \end{pmatrix}$ преобразуется в

$$\vec{E} = \begin{pmatrix} E_0 \cdot sin\theta \cdot cos\varphi \\ E_0 \cdot (cos\theta - 1) \cdot \frac{sin2\varphi}{2} \\ E_0 \cdot (cos\theta + (1 - cos\theta) \cdot sin^2\varphi) \end{pmatrix}.$$
 Исследуем функцию $E_y(\varphi, \theta) = E_0 \cdot (cos\theta - 1) \cdot \frac{sin2\varphi}{2}$ на

экстремум. $\theta \in [\theta_{min}, \theta_{max}]$, где $\theta_{min} = 0$, $\theta_{max} = \arcsin \frac{D}{2F}(D, F - \text{диаметр и фокус линзы соот-ветственно}); <math>\phi \in [0, 2\pi]$.

$$\begin{cases} \frac{\partial E_{y}(\varphi,\theta)}{\partial \varphi} = 0 \\ \frac{\partial E_{y}(\varphi,\theta)}{\partial \theta} = 0 \end{cases} \Rightarrow \begin{cases} E_{0} \cdot (\cos\theta - 1) \cdot \cos 2\varphi = 0 \\ E_{0} \cdot (-\sin\theta) \cdot \frac{\sin 2\varphi}{2} = 0 \end{cases} \Rightarrow \begin{cases} \varphi = \frac{\pi}{4} + \frac{\pi \cdot n}{2}, n \in \mathbb{Z} \\ \theta = 2\pi \cdot k, k \in \mathbb{Z} \end{cases}.$$

Таким образом, экстремальные значения φ суть $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$. В точках $[\varphi = \frac{\pi}{4}, \theta = \theta_{max}]$ и $[\varphi = \frac{5\pi}{4}, \theta = \theta_{max}]$ E_y принимает минимальные значения, а в точках $[\varphi = \frac{3\pi}{4}, \theta = \theta_{max}]$ и $[\varphi = \frac{7\pi}{4}, \theta = \theta_{max}]$ – минимальные (рис. Б-2 a).

Выберем на сферическом волновом фронте точки M_1, M_2, M_3, M_4 так, чтобы они принадлежали, соответственно, прямым $\varphi_1 = \frac{\pi}{4}$, $\varphi_2 = \frac{3\pi}{4}$, $\varphi_3 = \frac{5\pi}{4}$, $\varphi_4 = \frac{7\pi}{4}$ и были равноудалены от начала системы координат $\zeta O \eta$ (рис. Б-2 δ). В фокальной плоскости YFZ также выберем четыре точки P_1, P_2, P_3, P_4 , принадлежащие, соответственно, прямым $\varphi_1 = \frac{\pi}{4}$, $\varphi_2 = \frac{3\pi}{4}$, $\varphi_3 = \frac{5\pi}{4}$, $\varphi_4 = \frac{7\pi}{4}$ и равноудаленных от точки F (рис. Б-2 δ). Найдем результирующее поле в каждой из точек P_1, P_2, P_3, P_4 от источников вторичных волн M_1, M_2, M_3, M_4 .

В точках M_1 , M_2 , M_3 , M_4 для проекции поля $E_{\mathcal{Y}}$ справедливы соотношения (рис. Б-2 a):

$$E_{y}(M_{1}) < 0$$
; $E_{y}(M_{2}) < 0$; $E_{y}(M_{3}) > 0$; $E_{y}(M_{4}) > 0$;

$$|E_{y}(M_{1})| = |E_{y}(M_{2})| = |E_{y}(M_{3})| = |E_{y}(M_{4})|.$$

Учитывая, что амплитуда сферической волны убывает как $\frac{1}{r}$ и устанавливая для каждой расчетной точки Р соотношения между расстояниями $M_i P_k$ ($i = \overline{1,4}, k = \overline{1,4}$) (например, для P_1 :

 $M_1P_1 << M_2P_1 = M_3P_1 < M_4P_1$ (Рис. Б-2-б, в)), находим в точках P_k значения $(E_y)_i$ $(i=\overline{1,4})$, создаваемые каждым источником вторичных волн M_i . На (Рис. ZZ-г) условно показаны соотношения между $(E_y)_i$ от каждой из точек M_i .

Из результатов, изображенных на рис. Б-2 ε , следует, что в точках P_1 и P_3 значение E_y (суммарной, от всех источников M_i) одинаковы. То же справедливо для точек P_2 и P_4 . Таким образом, максимумы в распределении $E_y(x=0,y,z)$, расположенные вдоль прямых $\varphi_1=\frac{\pi}{4}$ и $\varphi_3=\frac{5\pi}{4}$ будут синфазны; максимумы, расположенные вдоль прямых $\varphi_2=\frac{3\pi}{4}$ и $\varphi_4=\frac{7\pi}{4}$ также будут синфазны. Причем максимумы, расположенные вдоль прямых $\varphi_1=\frac{\pi}{4}$ и $\varphi_3=\frac{5\pi}{4}$ противофазны максимумам, расположенным вдоль прямых $\varphi_2=\frac{3\pi}{4}$ и $\varphi_4=\frac{7\pi}{4}$.

ПриложениеВ

Пределы применимости иограничения методов расчета.

Метод Кирхгофа.

- 1. Скалярный характер метода: компоненты вектора напряженности поля считаются независимыми (не принимается во внимание условие $div\vec{E}=0$), рассчитываются по отдельности, затем из них составляется вектор напряженности поля.
- 2. Математические допущения, сделанные при выводе окончательной формулы: $k \cdot R \gg 1$, где $k = \frac{2\pi}{\lambda}$, R расстояние от точки M на волновом фронте до расчетной точки P. Кроме того, интегрирование проводится не по замкнутой поверхности (как того требует вторая теорема Грина, из которой выводится окончательная формула Кирхгофа), а по волновому фронту падающей волны.
- 3. Физические допущения: излучение монохроматично, граничные условия на апертуре имеют вид: $\vec{U}(\vec{R}) = \begin{cases} \vec{U}(M) \cdot \frac{e^{-i \cdot k \cdot r}}{r} \text{, } s \text{ } npedenax \text{ } omsepcmus \\ 0 \text{ , } sa \text{ } npedenamu \text{ } omsepcmus \end{cases}$, т.е. предполагается, что поле не возмущено токами, индуцированными полем на экране, что справедливо при $k \cdot a \gg 1$, где a- линейный размер апертуры.

Метод Дебая.

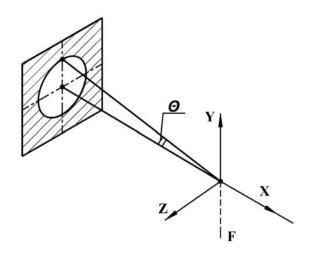


Рис. В-1. Пояснения к пределу применимости метода Дебая

В работе [3] показано, что при условии $k \cdot f \gg \frac{\pi}{\sin^2(\frac{\theta}{2})}$, (где $k = \frac{2\pi}{\lambda}$, θ – апертурный угол) интеграл Дебая (17) является решением уравнения Гельмгольца $\nabla^2 U(\vec{R}) + k^2 \cdot U(\vec{R}) = 0$ и удовлетворяет на апертуре граничным условиям вида $\vec{U}(\vec{R}) = \begin{cases} \vec{U}(M) \cdot \frac{e^{-i \cdot k \cdot r}}{r} , & \text{в пределах отверстия} \\ 0, & \text{за пределами отверстия} \end{cases}$. Решение представляет собой расходящуюся сферическую волну на бесконечности в полупространстве x > 0 (рис. В-1).

Работа выполнена при поддержке РФФИ (грант №08-02-00913-а)

ЛИТЕРАТУРА

- 1. Yu.A. Mikhailov, M.A. Grechko, O.A. Zhitkova, M.A. Zhurivich, A.V. Koutsenko, I.G. Lebo, J. Limpouch, A.A. Matsveiko, V.B. Rozanov, G.V. Sklizkov, A.N. Starodub, V.F. Tishkin, and A.M. Chekmarev, Effect of a prepulse on ablation-pressure smoothing in laser heating of thin foils // Journal of Russian Laser Research. 2007. V.28. N.4. P.310-319.
- 2. М.А. Журович, О.А. Житкова, И.Г. Лебо, Ю.А. Михайлов, Г.В. Склизков, А.Н. Стародуб, В.Ф. Тишкин Выравнивание абляционного давления в короне лазерной плазмы при нагреве мишеней для ЛТС // Квантовая электроника. − 2009. − Т. 39. №6. − С. 531-536.
- 3. Yu.A. Mikhailov, L.A. Nikitina, G.V. Sklizkov, A.N. Starodub, and M.A. Zhurovich Stochastic heating of electrons in focused multimode laser fields // Journal of Russian Laser Research. 2007. V.28. N.4. P. 344-355.
- 4. Yu.A. Mikhailov, L.A. Nikitina, G.V. Sklizkov, A.N. Starodub, and M.A. Zhurovich Relativistic electron heating in focused multimode laser fields with stochastic phase perturbations. // Laser and Particle Beams. 2008. V.26. P. 525-536.

- 5. П.В. Конаш, И.Г. Лебо Моделирование рассеяния пучка электронов на спонтанных магнитных полях в лазерной плазме. // Квантовая электроника. 2006. №36. С. 767-772.
- 6. Wolf E., Richards B. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system // Proc. R. Soc. Ser. A. 1959. P. 358 379.
- 7. Boivin A., Wolf E., Electromagnetic field in the neighborhood of the of the focus of a coherent beam // Physical Review 1965. V. 138. N. 6B. P. 1561 1565.
- 8. Wolf E., Li Y. Conditions for the validity of the Debye integral representation of focused fields // Optics Communications. 1981. V. 39. N. 4. P. 205 210.
- 9. Низьев В.Г. Дипольно волновая теория дифракции электромагнитного излучения // УФН. 2002. T. 172, № 5. C. 601 607.
- 10. М. Борн, Э. Вольф Основы оптики. Издательство "НАУКА", главная редакция физикоматематической литературы, М.:1973 г.
- 11. Л. Мандель, Э. Вольф Оптическая когерентность и квантовая оптика. М.: Наука. Физматлит, 2000.
- 12. Ю.В. Крыленко, Ю.А. Михайлов, А.С. Орехов, Г.В. Склизков, А.А. Филиппов Зависимость температуры стохастически нагреваемых электронов от плотности потока импульсного лазерного излучения на мишени // Краткие сообщения по физике ФИАН. − 2010. №28. − С. 6-7.