

ПРЕПРИНТ

Ю.И. СТОЖКОВ, Н.С. СВИРЖЕВСКИЙ, Г.А. БАЗИЛЕВСКАЯ, А.К. СВИРЖЕВСКАЯ, А.Н. КВАШНИН, М.Б. КРАЙНЕВ, В.С. МАХМУТОВ, Т.И. КЛОЧКОВА

ПОТОКИ КОСМИЧЕСКИХ ЛУЧЕЙ В МАКСИМУМЕ КРИВОЙ ПОГЛОЩЕНИЯ В АТМОСФЕРЕ И НА ГРАНИЦЕ АТМОСФЕРЫ (1957–2007)

Введение

В 50-х годах 20-го столетия академик С.Н. Вернов предложил проводить измерения потоков космических лучей в атмосфере Земли методом регулярного зондирования. Основными задачами эксперимента были исследования модуляционных эффектов галактических космических лучей, механизмов ускорения частиц во вспышечных процессах на Солнце и распространения солнечных космических лучей в межпланетной среде. В середине 1957 года С.Н. Вернов вместе с профессором А.Н. Чарахчьяном воплотил эту идею в жизнь, и с тех пор регулярные измерения потоков заряженных частиц в атмосфере полярных и средних широт проводятся вплоть до настоящего времени. За весь период измерений выпущено около 80 тысяч радиозондов.

Огромный объем экспериментальных работ по измерению космических лучей в атмосфере на высокоширотных и среднеширотных станциях был выполнен сотрудниками Физического института им. П.Н. Лебедева Российской академии наук (ФИАН) в кооперации с несколькими академическими институтами и институтами других ведомств. В их число входят Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына Московского государственного университета им. М.В. Ломоносова ФRNNH) МГУ, руководитель работ – д.ф.-м.н. Т.Н. Чарахчьян), Казахский государственный университет им. С.М. Кирова (КазГу, Алма-Ата, руководитель работ – профессор Е.В. Коломеец), Полярный геофизический институт РАН (ПГИ РАН, Апатиты, руководитель работ – д.ф.-м.н. Э.В. Вашенюк), Ереванский физический институт им. А.И. Алиханяна (ЕРФИ, руководитель работ – к.ф.-м.н. Г.А. Асатрян), Космофизическая обсерватория Института космофизических исследований и аэрономии им. Ю.Г. Шафера Сибирского отделения Российской академии наук (ИКФИА СО РАН, Тикси, руководитель работ – к.ф.-м.н. А.М. Новиков), Полярный полигон Института земного магнетизма и распространения радиоволн (теперь Институт солнечно-земной физики) Сибирского отделения РАН (ИСЗФ СО РАН, Норильск, руководитель работ – к.ф.-м.н. В.П. Карпов), Ленинградский филиал Института земного магнетизма, ионосферы и распространения радиоволн РАН (ЛО ИЗМИРАН, Воейково, руководитель работ – д.ф.-м.н. М.И. Тясто), Крымская астрофизическая обсерватория (руководитель работ – д.ф.-м.н. А.А. Степанян), Институт прикладной геофизики им. Е.К. Федорова Росгидромета (ИПГ, Москва, руководитель работ – д.ф.-м.н. Н.К. Переяслова), Университет г. Кампинас, Бразилия (руководитель работ – доктор И.М. Мартин). С 1963 года измерения космических лучей в атмосфере проводятся на российской антарктической станции Мирный при постоянной поддержке и помощи Арктического и Антарктического научно-исследовательского института Росгидромета (ААНИИ).

После распада СССР в начале 90-х годов научные исследования в России практически перестали финансироваться. Регулярные измерения космических лучей в атмосфере удалось сохранить благодаря поддержке академика А.Е. Чудакова, который убедил руководство Российской академии наук в необходимости продолжать эти работы. Большую помощь в финансировании и проведении измерений оказали и продолжают оказывать центральная дирекция Физического института им. П.Н. Лебедева, Российский фонд фундаментальных исследований, целевая программа фундаментальных исследований Президиума РАН «Нейтринная физика».

Описание эксперимента

Для регистрации космического излучения в стратосфере были разработаны специальный радиозонд, наземная приемная аппаратура и стенды для градуировки детекторов частиц и бародатчиков. Большой вклад в создание аппаратуры и проведение измерений внесли инженеры Долгопрудненской научной станции ФИАН П.Н. Агешин, В.В. Баяревич, А.Е. Голенков, А.Ф. Красоткин, В.Н. Макунин и другие. Датчиками заряженных частиц в радиозонде являются газоразрядный счетчик СТС-6 и телескоп из двух таких же счетчиков. Цилиндрический счетчик СТС-6 имеет рабочую длину 98 мм, диаметр 19 мм. Толщина стальных стенок равна 50 мг·см⁻² и определяет пороговое значение энергии регистрируемых электронов $E_{enop} = 200-300$ кэВ и протонов $E_{pnop} = 5$ МэВ. Эффективность регистрации у-квантов счетчиком меньше 1%. Телескоп содержит 7мм алюминиевый фильтр между счетчиками, который, совместно со стенками счетчиков, определяет пороговые значения энергии электронов $E_{enop} = 5$ МэВ и протонов $E_{pnop} = 30$ МэВ. Эффективность регистрации у-квантов телескопом равна нулю. Расстояние между центрами верхнего и нижнего счетчиков телескопа равно 26 мм. Геометрические факторы счетчика Гсч и телескопа Гтел зависят от углового распределения частиц, падающих на детекторы. Для изотропного распределения частиц в верхней полусфере $\Gamma_{cy} = 16.4 \text{ см}^2$ и $\Gamma_{\rm теп} = 17.8 \, {\rm см}^2$ -ср. В атмосфере близкими к изотропному являются распределения заряженных частиц в максимуме кривой поглощения и распределение первичных частиц на границе атмосферы. Более подробное описание эксперимента приводится в [1–5].

В 1960-е годы в атмосфере Земли на высоких, средних и низких широтах в северном полушарии проводились регулярные измерения потоков γ -квантов с энергией $E_{\gamma} \ge 20$ кэВ. Использовалась стандартная аппаратура, в которой детектором γ -квантов был кристалл *NaJ*(*Tl*) диаметром 20 мм и высотой 20 мм [6].

Обработка экспериментальных данных проводилась на Долгопрудненской научной станции ФИАН. Огромный труд в эту работу был вложен инженерами, техниками и лаборантами ДНС Г.В. Ястребцевой, А.Ф. Бирюковой, К.А Богатской, А.М. Истратовой, В.И. Обрываловой, Г.В. Клишиной, О.А. Шишковой, Е.Г. Плотниковой, Г.И. Плугарь и многими другими.

Пункт измерений	Географические координаты	<i>R</i> _c , ГВ	Период измерений
Ст. Лопарская, ст. Оленья,	68°57′C; 33°03′B	0.6	07.1957-наст. время
Апатиты, Мурманская область	67°33′C; 33°20′B		03.1965–12.1968 (γ)
Долгопрудный,	55°56′C; 37°31′B	2.4	07.1957-наст. время
Московская область			10.1964–12.1969 (γ)
Алма-Ата, Казахстан	43°15′C; 76°55′B	6.7	03.1962-04.1993
Обс. Мирный, Антарктида	66°34′Ю; 92°55′В	0.03	03.1963-наст. время
			03.1958-12.1961
Симеиз, Крым	44°00′C; 34°00′B	5.9	03.1964-04.1970
			10.1964–12.1969 (γ)
Воейково,	60°00′C; 30°42′B	1.7	11.1964-03.1970
Ленинградская область			
Норильск, Красноярский край	69°00′C; 88°00′B	0.6	11.1974–06.1982
Ереван, Армения	40°10′C; 44°30′B	7.6	01.1976-04.1989
Тикси, Якутия	71°36′C; 128°54′B	0.5	02.1978-09.1987
Дальнереченск,	45°52′C; 133°44′B	7.35	08.1978-05.1982
Хабаровский край			
Ст. Восток, Антарктида	78°47′Ю; 106°87′В	0.00	01.1980-02.1980
Баренцбург, Норвегия	78°36′C; 16°24′B	0.06	05.1982, 03-07.1983

Таблица 1. Пункты и периоды измерений потоков космических лучей и у-квантов в атмосфере

Кампинас, Бразилия	23°00′Ю; 47°08′З	10.9	01.1988-02.1991
--------------------	------------------	------	-----------------

В таблице 1 приведены некоторые характеристики пунктов регулярных измерений потоков заряженных частиц и γ -квантов в атмосфере. Измерения проводятся на широтах с различными геомагнитными порогами R_c и охватывают интервал высот от уровня земли до 30–35 км. Атмосфера Земли, кроме того, использовалась как естественный анализатор частиц по жесткости (энергии). На уровне наблюдения x в атмосфере вклад в скорость счета детекторов определяется первичными частицами с жесткостью выше некоторой пороговой величины, называемой жесткостью атмосферного обрезания R_a , если $R_a > R_c$, или геомагнитным порогом R_c , если $R_a < R_c$. Зависимость величины R_a от атмосферного давления x была установлена по данным широтных измерений и имеет вид $R_a = 4 \cdot 10^{-2} \cdot x^{0.8}$, где R_a дано в ГВ, x в г·см⁻² [7].

В течение всего периода наблюдений использовались одни и те же детекторы заряженных частиц (газоразрядные счетчики СТС-6) и γ-квантов (кристалл NaJ(Tl)) и одни и те же стенды, на которых проводилась их градуировка. Благодаря этому, мы имеем однородные ряды данных, которые представлены в таблицах 3–32. Наиболее длинные ряды данных получены в измерениях в Мурманской области и на среднеширотной станции (г. Долгопрудный Московской области), которые охватывают период с июля 1957 года по настоящее время.

В качестве примера на рис. 1а, б показаны среднемесячные высотные зависимости скорости счета заряженных частиц, измеренной одиночным счетчиком $N_1(x)$ и телескопом $N_2(x)$, на разных широтах в период минимума солнечной активности в июле 1987 года. Отчетливо видны максимумы значений N_{1m} и N_{2m} . Значения максимальных потоков космических лучей в атмосфере имеют, очевидно, минимальную статистическую ошибку и не зависят от точности определения высоты или атмосферного давления. Данные в максимуме кривой поглощения используются ниже для определения потоков первичных космических лучей на границе атмосферы. Аналогичные высотные зависимости в атмосфере имеют и потоки γ -квантов [6].

Рис. 1а. Зависимость скорости счета заряженных частиц $N_1(x)$ от атмосферного давления x (кривые поглощения) по данным одиночного газоразрядного счетчика. Показаны средние за месяц значения на северной полярной широте с геомагнитным порогом $R_c = 0.6$ ГВ (черные точки) и южной полярной широте с $R_c = 0.03$ ГВ (открытые кружки), а также в северном полушарии на средней широте с $R_c = 2.4$ ГВ (темные треугольники) и низкой

широте с $R_c = 6.7 \ \Gamma B$ (светлые квадраты). Цифрами у кривых указаны значения R_c . Среднеквадратичные ошибки данных не превышают размеров символов.

Рис. 16. То же, что на рис. 1а, для скорости счета $N_2(x)$, измеренной телескопом.

В таблицах 3–27 представлены среднемесячные значения потоков космических лучей (галактических космических лучей и вторичных заряженных частиц, образованных ими в атмосфере) по данным одиночного счетчика и телескопа в максимуме кривой поглощения ($N_{\rm 1m}$ и $N_{\rm 2m}$ и их среднеквадратичные ошибки σ_1 и σ_2) для пунктов и периодов времени, указанных в таблице 1. В таблицах 28–30 также приведены среднемесячные значения потоков γ -квантов $N_{\gamma m}$ с энергией $E_{\gamma} \ge 20$ кэВ в максимуме кривой поглощения в атмосфере для пунктов и периодов времени, указанных в таблице 1.

Вычисление потоков частиц на границе атмосферы

а) метод экстраполяции потоков частиц к границе атмосферы

Из высотных зависимостей (см. примеры на рис.1а, б) можно определить потоки заряженных частиц на границе атмосферы, где атмосферное давление x = 0. Для этого находим разность кривых поглощения, полученных на широтах с $R_c = 0.6$ ГВ и $R_c = 2.4$ ГВ при 4 < x < 85 г·см⁻² и экстраполируем их к границе атмосферы. В качестве примера на рис. 2а, б показаны высотные зависимости разности потоков частиц $dN_{1m}(x)$ и $dN_{2m}(x)$ в минимуме солнечной активности и указан интервал энергий первичных протонов, к которому эти разности относятся. Приведены также выражения для аппроксимации величин $dN_{1m}(x)$ и $dN_{2m}(x)$, рассчитанные по методу наименьших квадратов, и значения коэффициентов корреляции r между экспериментальными точками и аппроксимацией. Разности кривых поглощения в интервале энергий $0.1 \le E \le 1.5$ ГэВ удается аппроксимировать экспоненциальным законом (сплошная линия).

Аналогичные разности высотных кривых, полученных на широтах с $R_c = 0.6 \ \Gamma B$ и $R_c = 6.7 \ \Gamma B$, приведены на рис 3а, б. В этом случае интервал энергии первичных протонов составляет $0.1 \le E \le 5.8 \ \Gamma$ эВ. Величины $dN_{1m}(x)$ и $dN_{2m}(x)$ можно аппроксимировать линейным законом.

Полученные экстраполяцией потоки заряженных частиц при x = 0 включают первичные космические лучи J_0 и частицы альбедо J_A . Вычитая из потоков заряженных частиц потоки частиц альбедо J_A , можно получить потоки первичных космических лучей J_0 на границе атмосферы. Величины потоков альбедных частиц J_A представлены в [8, 9]. При вычислениях предполагалось, что первичные космические лучи распределены в верхней полусфере изотропно, а геометрические факторы одиночного счетчика и телескопа равны, соответственно, 16.4 см² и 17.8 см² ср. Среднемесячные значения потоков первичных частиц на границе атмосферы $J_0(E \ge 0.1 \ {\Gamma} \Rightarrow B)$ и $J_0(0.1 \le E \le 1.5 \ {\Gamma} \Rightarrow B)$ даны в таблицах 31–32.

Рис. 2а. Разность $dN_1(x)$ скоростей счета одиночного счетчика на высокой ($R_c = 0.6 \ \Gamma B$) и средней широте ($R_c = 2.4 \ \Gamma B$) в северном полушарии в зависимости от атмосферного давления *x*. Показаны утроенные стандартные ошибки экспериментальных точек 3σ .

Рис. 26. То же, что на рис. 2а, для разности $dN_2(x)$ скоростей счета телескопа на широтах с $R_c = 0.6 \ \Gamma B$ и $R_c = 2.4 \ \Gamma B$ в северном полушарии.

Рис. За. Разность скоростей счета $dN_1(x)$ одиночного счетчика на высокой широте ($R_c = 0.6$ ГВ) и на низкой широте ($R_c = 6.7$ ГВ) в северном полушарии в зависимости от *x*. Показаны утроенные стандартные отклонения 3σ .

Рис. 36. То же, что на рис. За, для разности $dN_2(x)$ скоростей счета телескопа на широтах с $R_c = 0.6 \ \Gamma B$ и $R_c = 6.7 \ \Gamma B$ в северном полушарии.

б) связь между потоками частиц на границе атмосферы и потоками в максимуме кривой поглощения

Отметим тот факт, что коэффициент корреляции r между относящимися к минимуму солнечной активности величинами $dN_1(x)$, $dN_2(x)$ и их аппроксимацией близок к 1 (рис. 2a, б и 3a, б). Это свидетельствует о том, что такая аппроксимация данных оправдана. Однако высокие значения r получаются не для всех периодов наблюдений. В периоды, близкие к максимумам солнечной активности, широтный эффект в атмосфере существенно уменьшается, соответственно уменьшаются разности потоков частиц $dN_1(x)$ и $dN_2(x)$, и их ошибки становятся сравнимыми с ошибками наблюдений. Особенно это заметно на разностях, полученных по измерениям на высоких и средних широтах. В эти периоды метод экстраполяции становится неточным. Кроме того, потоки космических лучей $N_1(x)$,

полученные на высоких широтах с помощью одиночного счетчика, могут содержать небольшой вклад от высыпающихся частиц солнечного или магнитосферного происхождения.

Поэтому для нахождения потоков первичных частиц $J_0(E \ge 0.1 \ \Gamma \Rightarrow B)$ и $J_0(0.1 \le E \le 1.5 \ \Gamma \Rightarrow B)$ на границе атмосферы мы используем еще один метод, основанный на связи величин J_0 с потоками частиц N_m в максимумах кривых поглощения. Как уже говорилось, величины N_m имеют минимальную статистическую погрешность и не зависят от неточности в определении атмосферного давления x. Мы используем значения N_m , полученные на станциях с геомагнитными порогами R_c , равными 0.6, 2.4 и 6.7 ГВ. Атмосферное давление x_m , при котором регистрируется максимальный поток частиц, зависит от геомагнитного порога станции и от фазы 11-летнего солнечного цикла. В таблице 2 приведены значения x_m и E_{min} в минимуме и максимуме солнечной активности для указанных выше геомагнитных порогов. Под E_{min} понимается пороговое значение энергии первичных протонов, начиная с которого они дают вклад в потоки частиц на глубине x_m в атмосфере. Значения E_{min} для атмосферного давления x_m получены из соотношения $E_{min} = \sqrt{R^2 + m_p^2 c^4} - m_p c^2$, где $R = R_a = 4 \cdot 10^{-2} \cdot x_m^{0.8}$ при $R_a > R_c$ и $R = R_c$ при $R_a \le R_c$, m_p – масса протона, x_m – атмосферное давление в г см^{-2} [7].

Таблица 2. Значения x_m и E_{min} (для протонов, по данным одиночного счетчика) для пунктов наблюдений с геомагнитными порогами R_c , равными 0.6, 2.4 и 6.7 ГВ, в периоды минимума и максимума солнечной активности

<i>R</i> _c , ГВ (Е _с , ГэВ)	0.6 (0.18)	2.4 (1.6)	6.7 (5.8)
Минимум	$x_{\rm m}, \Gamma \cdot {\rm cm}^{-2}$	30	50	80
активности <i>Е</i> _{min} , ГэВ	0.18	1.6*	5.8*	
Максимум солнечной активности $x_{\rm m}$, $\Gamma \cdot {\rm CM}^{-2}$ $E_{\rm min}$, $\Gamma \cdot {\rm B}$	60	60	85	
	E_{\min} , ГэВ	0.5	1.6*	5.8*

* – значения E_{\min} определяются величиной порога геомагнитного обрезания R_c .

Из таблицы 2 видно, что для величин $N_{\rm m}$ значения $E_{\rm min}$ определяются атмосферным обрезанием только в области полярных широт в максимуме солнечной активности. На средних и низких широтах минимальные значения энергий первичных частиц на границе атмосферы $E_{\rm min}$ определяются величиной геомагнитного порога R_c .

На рис. 4а, б показана зависимость между значениями первичных потоков космических лучей $J_0(0.1 \le E \le 1.5 \ \Gamma \Rightarrow B)$, полученных методом экстраполяции, и разностями потоков частиц $dN_{1m} = N_{1m}(0.6) - N_{1m}(2.4)$ по данным одиночного счетчика и $dN_{2m} = N_{2m}(0.6) - N_{2m}(2.4)$ по данным телескопа в максимуме их высотных кривых. Соотношение между J_0 и dN_{1m} для одиночного счетчика имеет высокий коэффициент корреляции r = 0.95 и может быть представлено в виде:

$$J_0(0.1 < E < 1.5 \ \Gamma \Im B) = (2773 \pm 25) \cdot dN_{1m} + (154 \pm 9),$$
(1)

где $[J_0] = M^{-2} \cdot c^{-1} \cdot cp^{-1}$ и $[dN_{1m}] = cM^{-2} \cdot c^{-1}$. Для счетчикового телескопа (рис.4б) коэффициент корреляции *r* равен 0.93, а связь между J_0 и dN_{2m} имеет вид:

$$J_0(0.1 < E < 1.5 \ \Gamma \Im B) = (19715 \pm 239) \cdot dN_{2m} + (216 \pm 11),$$
(2)

где $[J_0] = \mathbf{M}^{-2} \cdot \mathbf{c}^{-1} \cdot \mathbf{c} \mathbf{p}^{-1}$ и $[dN_{2m}] = \mathbf{c} \mathbf{M}^{-2} \cdot \mathbf{c}^{-1} \cdot \mathbf{c} \mathbf{p}^{-1}$.

Вклад частиц альбедо в величину J_0 , найденную по данным телескопа, незначителен. В максимуме кривых поглощения в атмосфере так же, как и на ее границе частицы распределены изотропно в верхней полусфере [3] и геометрический фактор телескопа равен $\Gamma_{\text{тел}} = 17.8 \text{ см}^2 \cdot \text{ср.}$

Рис. 4а. Корреляционная связь между среднемесячными значениями первичных потоков космических лучей $J_0(0.1 \le E \le 1.5 \ {\rm ГэВ})$, полученными методом экстраполяции за период 07.1957–06.2004, и разностями потоков частиц dN_{1m} по данным одиночного счетчика в максимуме высотных кривых в атмосфере на широтах с $R_c = 0.6$ и 2.4 ГВ. Прямая линия проведена методом наименьших квадратов.

Рис. 46. То же, что на рис. 4а, для разностей dN_{2m} потоков космических лучей в максимумах высотных кривых в атмосфере, полученных с помощью телескопа, на широтах с $R_c = 0.6$ и 2.4 ГВ за период 01.1960–12.2004.

Рис. 5а. Корреляционная связь между значениями первичных потоков космических лучей $J_0(E \ge 0.1 \ \Gamma \ni B)$, полученными методом экстраполяции за период 07.1957–12.2004, и потоками частиц N_{1m} , регистрируемыми одиночными счетчиками в максимумах высотных кривых в атмосфере на широте с $R_c = 0.6 \ \Gamma B$. Прямая линия проведена методом наименьших квадратов.

Рис. 56. То же, что на рис. 5а, для данных, полученных с помощью телескопа на широте с $R_c = 0.6 \ \Gamma B$ за период 01.1960–12.2004.

Аналогичные корреляционные связи между экстраполированными значениями интегральных потоков по энергии $J_0(E \ge 0.1 \ \Gamma$ эВ) и величинами потоков космических лучей N_{1m} и N_{2m} в максимумах высотных кривых можно найти для полярных широт ($R_c = 0.6 \ \Gamma$ B). Эти связи показаны на рис. 5а, б. Для данных, полученных с помощью одиночного счетчика, коэффициент корреляции r равен 0.99, и связь между J_0 и N_{1m} имеет вид:

$$J_0(E \ge 0.1 \ \Gamma \Im B) = (1893 \pm 12) \cdot N_{1m} - (2778 \pm 32),$$
(3)

где $[J_0] = M^{-2} \cdot c^{-1} \cdot cp^{-1}$ и $[N_{1m}] = cM^{-2} \cdot c^{-1}$. Для данных, полученных с помощью телескопа, коэффициент корреляции r = 0.98, и связь между J_0 и N_{2m} имеет вид:

$$J_0(E \ge 0.1 \ \Gamma \mathfrak{B}) = (13051 \pm 98) \cdot N_{2m} - (2698 \pm 39),$$
(4)

где $[J_0] = M^{-2} \cdot c^{-1} \cdot cp^{-1}$ и $[N_{2m}] = cM^{-2} \cdot c^{-1} \cdot cp^{-1}$. Значения $J_0(0.1 < E < 1.5 \ \Gamma \Rightarrow B)$ и $J_0(E \ge 0.1 \ \Gamma \Rightarrow B)$, полученные методом экстраполяции данных одиночного счетчика и телескопа к границе атмосферы, должны в пределах ошибок совпадать со значениями, полученными из соотношений (1)–(4).

В таблицах 3–27 приведены среднемесячные значения потоков заряженных частиц, измеренных в максимумах кривых поглощения космических лучей в атмосфере, для станций и периодов наблюдений, указанных в таблице 1, в таблицах 3–15 приводятся значения потоков по данным одиночных счетчиков, в таблицах 16–27 представлены потоки по данным телескопов.

В таблицах 28–30 приведены среднемесячные значения потоков γ-квантов, измеренные кристаллом *NaJ*(*Tl*).

В таблицах 31–32 представлены среднемесячные значения потоков первичных космических лучей на границе атмосферы J_0 для частиц с энергией $E \ge 0.1$ ГэВ и в интервале энергии $0.1 \le E \le 1.5$ ГэВ. Значения J_0 получены двумя способами: 1) экстраполяцией к границе атмосферы данных одиночного счетчика и телескопа и 2) вычислением J_0 по формулам (1)–(4) с использованием величины потоков частиц в максимумах кривых поглощения в атмосфере. В таблицах 31–32 даны усредненные значения J_0 .

Настоящий препринт и экспериментальные данные также находятся на сайте http://sites.lebedev.ru/DNS FIAN/.

Литература

- 1. Чарахчьян А.Н. Исследование флуктуаций интенсивности космических лучей в стратосфере, вызываемых процессами на Солнце. УФН, 1964, т. 83, вып. 1, с. 35-62.
- 2. Чарахчьян А.Н., Базилевская Г.А., Стожков Ю.И., Чарахчьян Т.Н. Космические лучи в стратосфере и околоземном пространстве в период 19-го и 20-го циклов солнечной активности. Труды ФИАН, М.: Наука, 1976, т. 88, с. 3-50.
- 3. Голенков А.Е., Охлопков В.П., Свиржевская А.К., Свиржевский Н.С., Стожков Ю.И. Планетарное распределение интенсивности космических лучей по измерениям в стратосфере. Труды ФИАН, М.: Наука, 1980, т. 122, с. 3-14.
- 4. Bazilevskaya G.A., Krainev M.B., Stozhkov Yu.I., Svirzhevskaya A.K., Svirzhevsky N.S. Long-term Soviet program for the measurement of ionizing radiation in the atmosphere. Journal of Geomagnetism and Geoelectricity, 1991, v. 43, Suppl., p. 893-900.
- 5. Стожков Ю.И., Свиржевский Н.С., Базилевская Г.А., Махмутов В.С., Свиржевская А.К. Исследования космических лучей в атмосфере Арктики и Антарктики. Арктика и Антарктика. М.: Наука, 2004, вып. 3 (37), с. 114-148.
- 6. Чарахчьян А.Н., Базилевская Г.А., Квашнин А.Н., Чарахчьян Т.Н. Фотонная компонента космических лучей в атмосфере. Труды ФИАН, М.: Наука, 1976, т. 88, с. 51-79.
- Stozhkov Y.I., Svirzhevsky N.S., Makhmutov V.S., Svirzhevskaya A.K. Long-term cosmic ray observations in the atmosphere. Proc. 27th ICRC, Hamburg, Germany, 2001. Hamburg: Copernicus Gesellshaft, 2001, v. SH, p. 3883-3886.
- 8. Чарахчьян А.Н., Базилевская Г.А., Стожков Ю.И., Чарахчьян Т.Н. Альбедо космических лучей в околоземном пространстве. Геомагнетизм и аэрономия, 1974, т. 14, № 3, с. 411-416.
- 9. Голенков А.Е., Охлопков В.П., Свиржевская А.К., Свиржевский Н.С., Стожков Ю.И. Альбедо космических лучей по измерениям в стратосфере. Изв. АН СССР, сер. физ., 1978, т. 42, № 5, с. 997-1006.