РОССИЙСКАЯ АКАДЕМИЯ НАУК

препринт Г.А. СОКОЛ, Е.Г. БЕССОНОВ

7

О ВОЗМОЖНОСТИ СОЗДАНИЯ ПУЧКА «МЕЧЕНЫХ» γ-КВАНТОВ НА ОСНОВЕ ЛИНЕЙНОГО УСКОРИТЕЛЯ LINAC-800 И ИСПОЛЬЗОВАНИЕ «МЕЧЕНЫХ» ФОТОНОВ ДЛЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ ПО ФИЗИКЕ ЭТА (η)-МЕЗОННЫХ ЯДЕР

О возможности создания пучка "меченых" γ -квантов на основе линейного ускорителя электронов Linac-800 и использование "меченых" фотонов для проведения исследований по физике эта (η) -мезонных ядер

(проект)

Г.А. Сокол, Е.Г. Бессонов.

Физический институт им. П.Н. Лебедева РАН

e-mail: gsokol@sgi.lpi.msk.su

Аннотация

В Проекте рассматривается возможность создания распределенного во времени пучка электронов в линейном ускорителе Linac-800 и получения на его основе пучка меченых по энергии γ -квантов. Оценивается возможность использования такого пучка меченых фотонов для проведения исследований в новой области ядерной физики - физике эта(η)-мезонных ядер.

On a possibility to form a tagged photon beam at the electron linear accelerator Linac-800 as a base set-up and to use the tagged photons for investigations of eta-mesic nuclei

(project)

G.A. Sokol, E.G. Bessonov.

Physical Lebedev Institute, RAS

e-mail:gsokol@sgi.lpi.msk.su

Abstract

A possibility to form a time-separated electron beam in the electron linear accelerator Linac-800 and to get tagged photons at this set-up is considered. A feasibility of using these tagged photons for investigations in a new field of meson-nuclear physics, eta-mesic nuclei, is discussed.

А. Создание пучка "меченых" γ -квантов на основе линейного ускорителя электронов Linac-800

- 1. Использование пучков γ -квантов в исследованиях в области ядерной физики имеет ряд преимуществ по сравнению с использованием пучков частиц (π, p, d) :
 - электромагнитное взаимодействие хорошо известно, в то время как сильное взаимодействие частиц с ядром изучено недостаточно.
 - γ -квант взаимодействует со всеми нуклонами ядра в то время как π -мезоны, например, взаимодействуют в основном с нуклонами, расположенными на поверхности ядра.
 - уровень адронного фона при взаимодействии частиц с ядром значителен практически для любых углов регистрации, в то время как фоновое адронное сопровождение в случае взаимодействия с ядром γ -квантов сосредоточено для углов "вперед".
- 2. Однако, существует серьезное ограничение при использовании γ -квантов, связанное с непрерывным тормозным спектром γ -квантов по энергии, в то время как адронные пучки являются, как правило, высоко-монохроматичными.
- 3. Именно в силу этой причины исследования с использованием γ -квантов требуют создания так называемых "меченых" по энергии E_{γ} фотонов. В этом случае энергия γ -кванта E_{γ} , образующегося в процессе тормозного излучения электрона известной энергии E_{e0} на ядре A, определяется из простого соотношения $E_{\gamma} = E_{e0} E_{el}$, где E_{el} есть энергия рассеянного электрона el из процесса $e + A \rightarrow el + \gamma + A$, и электрон с энергией E_{el} регистрируется.
- 4. Для целей создания пучка меченых фотонов обычно используются высокоинтенсивные распределенные во времени источники электронов e_0 и магнитные системы для регистрации рассеянных электронов e_0 . Одним из вариантов для создания необходимого источника электронов является использование линейного ускорителя электронов и так называемого "растяжителя" пучка электронов во времени. Использование растяжителя необходимо для получения соответственно растянутого во времени пучка γ -квантов. Это необходимо, когда применяется электронная система регистрации частиц, возникающих в результате исследуемой реакции. При использовании магнитных или камерных систем регистрации растяжитель не нужи
- 5. В настоящем Проекте рассматривается возможность получения распределенного во времени пучка электронов непосредственно в линейном ускорителе Linac-800. Такой режим линейного ускорителя исключает необходимость использования "растяжителя" электронов, что значительно удешевляет всю систему мечения γ -квантов.
- 6. Первым и основным условием создания такой распределенной во времени системы является специальное формирование микроструктуры банча ускоряемых электронов в Linac-800. Частота микробанчей должна быть не выше F(мкбанч) = 20 MHz. Эта частота определяется частотой следования импульсов электронной "пушки", посылаемых в высокочастотную систему ускорения Linac-800. Такая

частота обеспечивает временной интервал между импульсами ускоренных электронов (микробанчами) $\Delta \tau$ (мкбанч) = 50 нсек. Это время достаточно для восстановления работоспособности электроники, применяемой как в системе мечения γ -квантов, так и в системе регистрации продуктов реакции в физической установке.

При фиксированном интервале $\Delta \tau$ (мкбанч) = 50 нсек между последовательными импульсами не возникает опасности наложения регистрируемых сигналов, что обычно возникает для статистически распределенных событий. Наложение сигналов может возникать при обычной частоте импульсов электронных пучков F (мкбанч) $\simeq 3~GHz$, совпадающей с частотой высокочастотной ускоряющей системы Linac -800.

- 7. При длительности серии микробанчей $\Delta \tau$ (банча) = 5 мксек будет реализовано в каждом банче 100 микробанчей, отстоящих друг от друга на $\Delta \tau$ (мкбанч) = 50 нсек $\left(n(\text{мкб}) = \frac{\Delta \tau(\delta)}{\Delta \tau(\text{мкб})}\right)$
- 8. При частоте следования импульсов тока пучка в Linac-800 F(имп) = 2~KHz будет реализовано N(мкбанч) = n(мкбанч) $\cdot F$ (имп) = $100 \cdot 2 \cdot 10^3 = 2 \cdot 10^5$ микробанчей в секунду.Временная структура таких микробанчей Linac-800 представлена на рис.1
- 9. После Linac-800 располагается магнитная система мечения γ -квантов, состоящая из мишени M1(A), на которой происходит тормозное излучение электронов e_0 , магнитной системы, отклоняющей пучок непровзаимодействующих в мишени электронов e_0 и пучок (веер) рассеянных электронов e', и детекторной системы регистрации e' (рис. 2).
- 10. Количество электронов в микробанче n_{eo} (мкбанч) и характеристики системы мечения (толщина мишени Δt (миш), количество детекторов в системе регистрации e^{t}) должны быть подобраны так, чтобы каждый микробанч приводил к появлению 1 меченого фотона, т.е. срабатывал бы 1 элемент в системе регистрации e^{t} в выбранном энергетическом интервале ΔE_{et} системы мечения.
- 11. Мишень системы мечения выбирается такой, чтобы потери энергии $\Delta E_{e'}$ рассеянных электронов в ней были бы незначительны. Обычно толщина мишени $\Delta t(M)$ выбирается равной $10^{-3}X_0$, что означает, что в мишени в среднем взаимодействует один из 10^3 электронов e_0 . Для Al-мишени $(X_0(Al) \simeq 9 \text{ см})$ достаточна толщина $\Delta t(M1) = 100$ мкм. Изменение координаты взаимодействия электрона e_0 (по толщине мишени) в принципе определяет точность по энергии системы мечения, поскольку приводит к изменению координаты регистрации рассеянного электрона e' детекторной системой из-за изменения энергии $E_{e'}$.
- 12. Условие: каждый микробанч должен приводить к срабатыванию одного детектора системы мечения, требует специального подбора интенсивности микробанча. Интенсивность микробанча должна быть ограничена сверху до величины фоновой загрузки регистрирующей физической электронной системы, приемлимой по условиям эксперимента. С учетом того, что часть возникающих е/-электронов не

- попадает в угловой раствор $\Delta\Theta_{(el)}$, определяемого магнитной системой регистрации, интенсивность микробанчей следует увеличить в $2\pi/\Delta\Theta(el)$ раз. В зависимости от выбранной магнитной системы эта величина может достигать значений $10 \div 100$. Это означает, что интенсивность микробанча может достигать значений $10^4 \div 10^5 e/$ мкбанч.
- 13. Электроны eI, вылетающие вне углового раствора $\Delta\Theta(eI)$, определяемого магнитной системой регистрации. Эти случаи являются источником фоновых немеченых γ -квантов, которые попадают на физическую мишень и могут создавать фоновую загрузку электронной физической системы регистрации. Основную долю фоновых γ -квантов составят мягкие γ кванты с энергиями $\Delta E_{\gamma} = (0$ 50) МэВ, Для уменьшения числа фоновых γ -квантов, попадающих на физическую мишень обычно используют Ве (бериллиевый) -фильтр, помещаемый в пучок "меченых" -фотонов. Такой Ве фильтр, толщиной 0,3 X_o обеспечит поглощение фотонов с энергиями $\Delta E < 50$ Мэв. С целью устранения фонового срабатывания физической аппаратуры необходимо предусмотреть блокировку работы электроники физической аппаратуры при отсутствии сигнала о срабатывании детектирующей части системы мечения. Блокировка может быть осуществлена в виде электронного ключа на входе системы регистрации (перед Φ СП).
- 14. Количество детекторов в системе регистрации рассеянных электронов e^{I} выбирается из необходимой точности определения энергии меченых γ -квантов E_{γ} , но с учетом дисперсии энергии e^{I} (пункт 11). Обычно выбирается детекторная система, содержащая \sim 100 детекторов (о чем сказано выше),
- 15. В зависимости от физической задачи выбирается определенный интервал по энергии меченых γ -квантов ΔE_{γ} . Так, для исследований в эта-мезонной ядерной физике необходим интервал по энергии $\Delta E_{\gamma} = (600 \div 800)$ МэВ, причем часть интервала $\Delta E(1) = (600-700)$ МэВ необходима для измерения фоновых процессов $(E_{\gamma}(\text{порог})(\eta) = 707 \text{ МэВ})$, и часть интервала $\Delta E_{\gamma}(2) = (700-800)$ МэВ необходима для измерения характеристик образующихся η -ядер. В соответствии с выбранным интервалом ΔE_{γ} детекторная часть системы мечения располагается в соответствующем месте фокальной плоскости системы мечения (рис. 2).
- 16. Размер детекторов системы мечения выбирается в зависимости от интервала ΔE_{γ} с учетом необходимой точности определения энергии меченых фотонов и из требования примерно одинаковой загрузки детекторов. Одним из вариантов для выбора размеров детекторов может быть использование закона вероятности возникновения энергии E_{γ} в тормозном спектре: $W(E_{\gamma}) \sim a/E_{\gamma}$. Это означает, например, что детектор, регистрирующий e' с энергией $E_{e'}=10$ МэВ и связанный с $E_{\gamma}=790$ МэВ, должен иметь размер в 2 раза больший размера детектора, регистрирующего e' с энергией $E_{e'}=400$ МэВ, что соответствует энергии меченого фотона с энергией $E_{\gamma}\simeq 400$ МэВ. При этих размерах число срабатываний детекторов будет примерно одинаково.
- 17. Таким образом, для создания пучка меченых γ -квантов на основе линейного ускорителя Linac-800 необходимо обеспечить следующие параметры Linac-800 и магнитной системы мечения.

- частота микробанчей должна быть $F(\text{мкб}) \approx 20 \ MHz$.
- длительность банча должна быть τ (банч) $\simeq 5$ мксек.
- частота следования банчей $F(\text{банч}) \simeq 2 \ KHz$.
- толщина мишени в магнитной системе мечения $\Delta t(M1) \simeq 100$ мкм (Al).
- число детекторов в системе регистрации рассеянных eI: n = 100.
- число электронов в микробанче $n_{eq} \approx 10^4 \div 10^5$.
- 18. При этих условиях можно получить число "меченых" γ -квантов $N_{\text{меч}}(\gamma)$ = $n(\text{мкбанч}) \cdot N(\text{банч}) = 100 \cdot 2 \cdot 10^3 = 2 \cdot 10^5 \ \gamma/\text{сек}$. Таким образом, удовлетворяется условие: каждый микробанч создает 1 меченый γ -квант. Фоновое количество γ -квантов может составлять $N_{\text{фон}}(\gamma) \sim 10^5 10^6 \ \gamma/\text{сек}$.
- 19. Linac-800 при этих условиях будет работать в достаточно облегченном токовом режиме: полный средний ток $I_{(e_0)}=n_{eo}(\text{мкбанч})\cdot N(\text{мкбанч})=10^5\cdot 2\cdot 10^5=2\cdot 10^{10}$ $e_0/\text{сек}.$

В. Использование "меченых" фотонов для проведения исследований в области эта-мезонных ядер

- 1. Физика η -мезонных ядер, как новая область ядерной физики в настоящее время успешно развивается в ряде ядерных центров (Москва-ФИАН, Дубна-ЛВЭ ОИЯИ, Дармштадт-SGI, Юлих-СОЅҮ, Майнц-МАМІ-2, Осака-Spring-8, Бонн-ТАРЅ, Япония- КЕК)[4]. Наиболее успешно исследования проводятся в процессах фоторождения с использованием пучков γ -квантов. Это объясняется существенно меньшим фоновым сопровождением регистрируемых событий при использовании пучков γ -квантов по сравнению с пучками частиц (π^+ , p, d). Именно поэтому очень перспективным может быть использование меченых фотонов, полученных на основе модифицированного Linac-800, для развития научной программы по исследованию η -ядер.
 - Формирование меченых фотонов на основе Linac -800 рассмотрено в пункте А настоящего Проекта.
- 2. Эта (η) -мезонные ядра являются новым типом нестабильных ядер, содержащих в своем составе, кроме нуклонов, либо η -мезон, либо $S_{11}(1535)$ -нуклонный резонанс. Эти два состояния η -мезонного ядра переходят друг в друга благодаря процессу $\eta N \leftrightarrow S_{11}(1535)$, осуществляющемуся в η -ядре за время $\tau_{1/2}(\eta) \simeq 10^{-23}$ сек. В этом смысле η -мезонное ядро можно рассматривать как "ядерный резонатор" (по образному замечанию В.И. Ритуса) с состояниями " ηN " и " S_{11} ". Этот резонатор обладает плохой "добротностью", поскольку через $3 \div 5$ переходов $\eta N \leftrightarrow S_{11} \eta$ -ядро распадается благодаря процессу $S_{11}(1535) \to \pi N$. Обнаружение η -мезонных ядер было осуществлено в ФИАНе при использовании γ -квантов тормозного излучения электронного синхротрона ФИАН [2].
- 3. Общепризнанным методом идентификации η -ядер является метод, развитый в ФИ-АНе, и состоящий в регистрации коррелированных по энергии и углу компонент πN -пар, возникающих при распаде $S_{11}(1535)$ -резонанса, находящегося в η -ядре [3].

- 4. Поскольку фоторождение η -мезонов начинается с $E_{\gamma} \approx 700$ МэВ то на реакцию фоторождения η -ядер будут работать γ -кванты от 700 до 800 МэВ (примерно 12 каналов из 100 системы регистрации eI).
- 5. На физическую мишень (для образования η -ядер) будет попадать пучок γ -квантов $N_{\rm M}(\gamma)=2\cdot 10^5~\gamma$ /сек, но только 10% из них будут иметь энергии $E_{\gamma}=>700$ МэВ, т.е. $2\cdot 10^4~\gamma$ /сек. Этого м.б. недостаточно для проведения эксперимента. Чтобы сохранить число меченых γ -квантов $N_{\rm Meq}(\gamma)=2\cdot 10^5~\gamma$ /сек для интервала $\Delta E_{\gamma}=600-800$ МэВ необходимо в ~ 10 раз увеличить число электронов $n(e_0)$ в микробанче и использовать в системе мечения только те детекторы, которые отвечают энергетическому интервалу $\Delta E_{\gamma}=(600-800)$ МэВ.
- 6. Можно оценить выход событий, связанных с образованием η -мезонных ядер, для случая, когда используется регистрация ($\pi^+ n$)-пар (регистрация нейтронов предпочтительна, т.к. можно взять достаточно толстую физическую мишень) и когда поток γ -квантов на мишень равен $N_{\text{меч}}(\gamma) \sim 2 \cdot 10^5 \ \gamma/\text{сек}$ (с $E_{\text{меч}}(\gamma) > 600 \ \text{МэВ}$).

$$Y(\pi^+ n) \sim N_{\text{меч}}(\gamma) \cdot \sigma(\eta A) \cdot N_{\text{я}} = 2 \cdot 10^5 \cdot 10^{-30} \cdot 3 \cdot 10^{23} =$$
 $6, 0 \cdot 10^{-2} \text{соб/сек} \simeq 200 \text{ соб/час}$

Эта оценка проведена для системы регистрации с телесным углом $\Omega(\pi^+ n) = 4\pi$. Если учесть, что $\Omega(\pi^+ n) \simeq 5 \cdot 10^{-2}$ стер, то счет двойных $(\pi^+ n)$ -событий м.б.

равен

$$Y(\pi^+ n, \Omega) = 200 \cdot 5 \cdot 10^{-2} = 10 \text{ coб/час}$$

Этот счет можно рассматривать как предельный для проведения измерений в области η -мезонной физики.

С.Некоторые выводы.

Проведенное в работе рассмотрение показывает, что в случае создания распределенных во времени пучков (микробанчей) ускоряемых в Linac-800 электронов с временным интервалом между микробанчами $\Delta \tau$ (микробанч) = 50 нсек, при длительности банча $\Delta \tau$ (банч) = 5 мксек, при частоте следования банчей F (банч) = 2 KHz, при соответствующем выборе параметров магнитной системы мечения можно получить число меченых γ -квантов $N_{\rm меч}(\gamma) = 2 \cdot 10^5 \ \gamma/{\rm cek}$. При этом выполняется условие: каждый микробанч создает 1 меченый γ -квант.

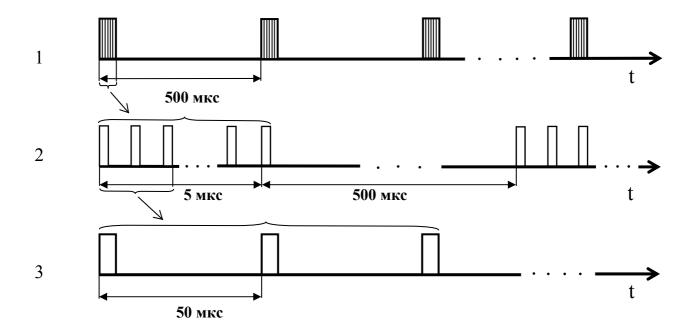
Это предельная величина $N_{\text{меч}}(\gamma)$ для проведения исследований в физике η -мезонных ядер.

D. Перспективы.

Linac-800 может стать основной базовой установкой для широкой программы исследований в мезон-ядерной физике. Можно высказать ряд пожеланий в программе работ по развитию Linac-800.

Желательно увеличение числа меченых γ -квантов до величины $N_{\rm меч}(\gamma)=2\cdot 10^6~\gamma$ /сек. Для этого необходимо иметь длительность банча Linac-800 $\Delta \tau$ (банч) = 10 мксек

и частоту следования банчей F(банч) = 10 KHz.


Следует заметить, что максимальное число микробанчей n_{eo} (мкбанч) при интервале между микробанчами $\Delta \tau$ (мкбанч) = 50 нсек , равно n_{eo} (мкбанч) = $2 \cdot 10^7$ (мкбанч) /сек , но это возможно при нелрерывном во времени режиме работы ускорителя Linac- 800. Соответственно, максимальное число меченых фотонов может быть равно $N_{\rm meq}(\gamma) = 2 \cdot 10^7 \ \gamma$ /сек

Следующим шагом может быть увеличение энергии ускоряемых электронов в Linac до 1000 МэВ. В этом случае возможно проведение исследования мезон-ядерных систем, в составе которых могут быть векторные мезоны (ρ, ω, φ) . При энергии ускоренных электронов $E_{e_0}=1200$ МэВ станет возможным исследование в гиперядерной физике.

Авторы выражают благодарность Ю.Н.Мешкову и Γ .Д.Ширкову за полезные обсуждения.

Ссылки

- [1] Προέκτ Linac-800
- [2] Г.А. Сокол, В.А. Трясучев КСФ ФИАН (Sov.Physics-Lebedev Institute Report № 4, 23 (1991)
- [3] G.A. Sokol et al. Fizika B (Zagreb) 8, № 1, 85-90 (1999)
- [4] Г.А.Сокол, препринт ФИАН, N 21 (2005)

Puc. 1 Временная структура микробанчей Linac - 800

- 1 временная структура серии импульсов тока;
- 2 временная структура одного импульса тока;
- 3 временная последовательность микробанчей.

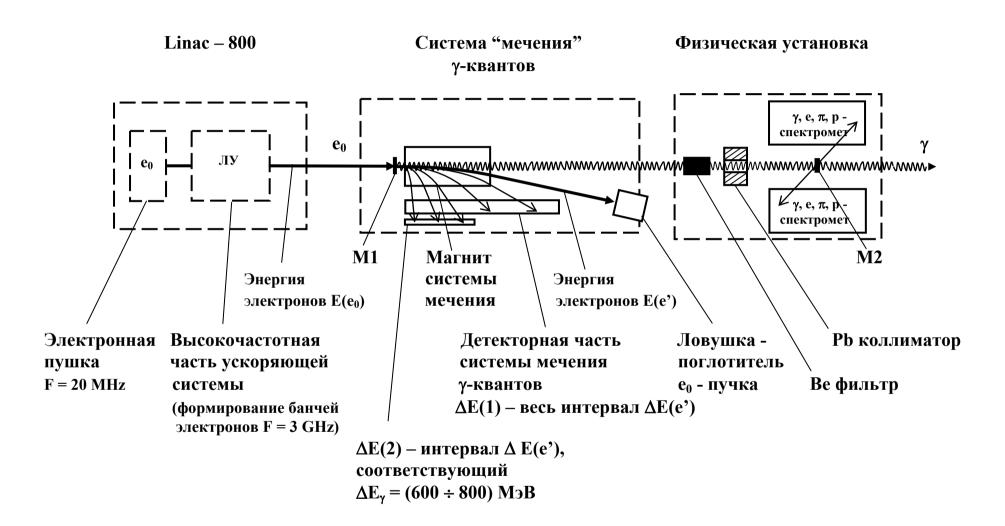


Рис. 2 Схема системы "мечения" γ-квантов на основе линейного ускорителя электронов Linac - 800