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The statistical properties of a radiation spectrum from an electron bunch of arbi-

trary shape are considered. The kinetic equation for the probability density of the 

complex vector of total radiation field is derived and solved. The simple way to obtain 

the moments of the first two orders is presented. Average spectral intensity and its 

fluctuation are calculated without restrictions to the number of particles in the bunch.  
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1. Introduction 

 
Nowadays there exists a great deal of interest in the generation of Terahertz ra-

diation, which lies in the far-infrared region of spectrum [1, 2]. Currently the most 
powerful Terahertz source is the radiation of short electron bunches enhanced by co-
herence effects [3]. The theory of coherence enhancement of radiation was proposed 
in [4-7]. Using somewhat heuristic arguments it was shown, that the radiation spec-
trum contains a multi-particle coherence enhancement component, which is deter-
mined by the square of the Fourier transform of the longitudinal spatial distribution 
function of the electrons.  

It was recognized in the early 50-s of the previous century that at high particle 
energies radiation becomes the dominant factor limiting the energy attainable with any 
magnetic accelerator. That is why the question on radiation produced by a group of 
electrons was raised by McMillan 60 years ago when the synchrotron concept was 
proposed [8, 9]. The first estimates of the radiation build-up due to coherence effects, 
when the radiation wavelength becomes less than the electron bunch length, showed 
the possible ways to eliminate it by a proper shielding [5, 6] . In [6] it was shown for 
the particular case of electrons symmetrically distributed around the mean position 
that the intensity enhancement is proportional to the Fourier component of the longitu-
dinal particle density squared. 

This initial stage of research resulted in the conclusion that the coherence ef-
fects do not contribute significantly to the energy losses in the accelerators being un-
der development. Thus the whole problem was put on a shelf for a long period of time. 

Since then, the main area of application of synchrotrons was shifted from high 
energy physics to the use as powerful sources of radiation. They are excellent light 
sources because of high brightness, high stability, clean environment, pulsed time 
structure. Incoherent Synchrotron radiation is now regarded as a standard light source. 

The interest in the coherent enhancement of radiation in the far infrared was re-
vived by the work of Michel [10] where very optimistic but incorrect qualitative the-
ory was proposed. Anyway, this publication resulted in the extensive theoretical and 
experimental efforts having the goal to observe the coherence effects. Soon the initial 
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conclusion was confirmed that the coherence effects are of negligible importance in 
the devices with long (1-100 cm) electron bunches [11, 12]. The negative experimental 
results motivated researchers to reject simple qualitative theory by Michel and to try to 
derive the result obtained in [6] more strictly. However, the old heuristic arguments 
were one more time applied in the proof of the above statement. It seemed so obscure 
for the authors [12] that they additionally verified their results with Monte-Carlo mod-
eling to see if an average spectral intensity follows the predicted law. 

The first successful observation of the coherence effect of Synchrotron Radia-
tion was made in 1989 [13] when the bunch of 2 mm length was used. The intensity of 
coherent radiation was about 106 times stronger that could be expected for incoherent 
radiation at the wavelengths around 1 mm. The value of the enhancement factor was 
of the same order of magnitude as the number of electrons in the bunch. Quite soon 
the coherent Cherenkov and transition radiations were reported [14, 15] and the prob-
lem has gained much of practical importance. 

 The radiation produced by an electron bunch is stochastic in its very nature due 
to the shot noise which in turn is related to the discreteness of electron charge. First 
attempts to analyze the statistical properties of synchrotron radiation were done in [16-
18]. The first and second – order correlations of complex Fourier harmonics of radia-
tion field were found under the assumption that coherence effects can be neglected, 
and subsequently used to explain the experiments with a self-amplified spontaneous 
emission free electron laser at  TESLA test facility at DESY [19].  

Recent experimental advances in the generation of steady state, powerful coher-
ent radiation have resulted in the growing area of application such as far infrared spec-
troscopy and terahertz imaging. All these applications require not only the knowledge 
of the radiation spectrum but the associated noise for the situation where coherence 
effects play significant role.   

An accurate statistical description of the radiation spectrum requires the prob-
ability density distribution function to be found. If the bunch length is large than the 
wavelength of the emitted radiation, electrons radiate incoherently and the probability 
density distribution of spectral intensity is given by the well known Rayleigh or nega-
tive exponential distribution [20]. Probability distribution for the radiation spectrum of 
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the bunch of arbitrary shape has not been analyzed till now. It is the aim of the present 
work to find the distribution function for this most general case. We restrict ourselves 
with the consideration of classical electromagnetic radiation, i.e. the noise associated 
with the quantum nature of light is neglected. In spite of that the theory we develop 
here is of common practical interest as it equally applies to the Cherenkov, transition 
and synchrotron radiation, as well as to the general problem of stochastic wave scatter-
ing [21]. 

In section 2 of the paper we formulate the general problem of shot noise in the 
electron bunch as related to the radiation spectrum. We show that this problem repre-
sents a particular case of the random walk in two dimensions. This means that well es-
tablished methods, developed in the theory of Brownian motion [22], can be invoked 
for its solution. In section 3 we investigate the situation when the number of electrons 
in the bunch is not fixed but the probability of emission of an electron within a unit 
time interval is known. This case corresponds to the statistics of radiation in free elec-
tron lasers. The corresponding kinetic equation is derived and a simple procedure to 
obtain the moments of first two orders without its rigorous solution is presented. These 
two moments correspond to the average electric field phasor and the average spectral 
intensity. In section 4 the characteristic function for the probability density is found 
and the fourth–order moment, the fluctuation of intensity, is calculated. The simple 
analytic form for the distribution function of the complex vector of the total radiation 
field is presented in the limiting case of large number of particles, and some illustra-
tive examples are provided. For the sake of brevity we analyze the case when electrons 
are distributed in one dimension along the line. The generalization of the results to 
multidimensional cases is obvious. In the Appendix similar results concerning the case 
of an electron bunch with a fixed number of particles are presented. This is the most 
typical situation for storage rings where bunch lifetime exceeds many hours. 
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2. The general problem of shot noise in the electron bunch 

 
The general problem of radiation spectrum generated by a group of electrons 

can be described as follows. In the far zone the k-th electron produces a spectral com-
ponent of electric field equal to 

 

kk tiEE ωωω exp)()( 0

rr
= ,      (1) 

 
where kt may be thought as the time moment when the k-th electron strikes a target in 

the case of transition radiation or as a temporal coordinate of the electron along the 
bunch in the case of synchrotron radiation. Note that the same problem arises in the 
radiation scattering when kt  is the temporal coordinate of a scattering atom.  Thus the 

total electric field produced by the bunch of electrons can be defined as 
 

( ))()()(exp)()()( 00 ωωωωωωω iYXEtiEEE
k

k
k

k +=== ∑∑
rrrr

,   (2) 

 
where the sum is taken over all the electrons in the bunch. Here we introduced an ex-
plicit definition for the real )(ωX and imaginary )(ωY  parts of the total complex sum. 

As usual, the power spectrum of radiation is given by the absolute value of the Point-
ing vector 
 

( )( )2 2
0( ) ( ) ( )J J X Yω ω ω ω= + ,    (3) 

 
where )(ωJ is the spectral intensity of radiation and ( )ω0J is the spectrum radiated by a 

single particle . The spectrum emitted by the electron bunch is the product of the spec-
trum, radiated by a single particle, and a multi-particle factor. Now we require the 
probability dXdYYXP ),( that the components YX ,  lie in the intervals 

dYYYdXXX ++ ,;,  provided the probability distribution for times kt is known. 
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The way the problem is now defined makes it similar to a problem of the 
Brownian motion in two dimensions. Thus it can be solved by the general method of 
Markoff [22]. For the sake of clearness of the presentation we follow a slightly modi-
fied approach to the solution of such problem given by Rayleigh [23]. 
 
3. Fluctuating number of electrons in a bunch 

 
Consider the bunch formed by the electrons emitted from a cathode so that the 

probability to emit an electron within a time interval dttt +,  is dtt)(α . The probability  

( )tα  equals to the electric current of the bunch, divided by elementary electric charge. 

An average number of electrons, emitted during all the observation period equals 

to ∫= dttN )(α . A schematic representation of the stochastic process of electron emis-

sion and the behavior of, say, )(ωX  is shown in Fig.1.a)-c). In Fig.1a) we can see that 

the electrons are emitted with the probability per unit time )(tα having a bell – like 

shape. Dotted vertical lines show the time moments ktttt ,....,,, 321  when the emission 

acts take place. These moments were picked with a random number generator accord-
ing to the shown probability distribution. Fig.1.b) shows the successive increments in 
X value and Fig.1c) demonstrates the resulting temporal behavior of X . The problem 
of practical importance is to find the limiting YX , - point as time goes to infinity.  

While looking at this picture one may ask a more general question. Namely, in-
stead of searching for the probability of the final result we may look for the probability 
to observe the YX ,  in the interval dYYYdXXX ++ ,;,  at an arbitrary time moment t .  

There are two ways to reach the point YX ,  at the moment dtt + . First of all, the 

system can already find itself in this point provided no electrons were emitted during 
the time interval dttt +, . The second way requires a successive electron emitted during 

the time interval dt. In this case the only point from which the transition to YX ,  may 

occur is the point with co-ordinates ( ) ( ),X cos t Y sin tω ω− − . 
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Fig.1. Schematic representation of a particular realization of the stochastic process 
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After these introductory remarks we can write the following kinetic equation for 
the probability distribution density 

 

( ) ( )( , , , ) ( , , , ) 1 ( ) cos( ), sin( ), , ( )P X Y t dt P X Y t t dt P X t Y t t t dtω ω α ω ω ω α+ = − + − − . (4) 

 
Here ),,,( tYXP ω  is the probability density that determines the chances to find coordi-

nates YX , at the moment t . The first term in the right side of (4) corresponds to the 

first way to reach the point YX ,  at the moment dtt +  without an electron emission and 

the second term is responsible for the transition when an electron is emitted during dt. 
In differential form the equation (4) reads as follows 
 

( )( , , , ) ( ) ( , , , ) ( ) cos( ), sin( ), ,P X Y t t P X Y t t P X t Y t t
t
ω α ω α ω ω ω∂

= − + − −
∂

.  (5) 

 
An initial condition for the probability density ),,,( tYXP ω  reflects the fact that there 

were no particles emitted in the infinitely long past, thus 0,0 == YX . It can be written 

as follows: 
 

)()(),,,( YXYXP δδω =−∞ .    (6) 

 
Now we will consider the moments of the probability distribution, which can be ob-
tained without a rigorous solution of (5). 

A simple procedure to deduce the moments of the first two orders is described 
below. It is based on the general properties of the kinetic equation (5). The first and 
second order moments are usually defined as follows [20],  

 

∫∫ == dXdYtYXYPYdXdYtYXPXX ),,,(  ;),,,( ωω    (7) 

and 
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∫∫ == dXdYtYXPYYdXdYtYXPXX ),,,(  ;),,,( 2222 ωω .   (8) 

 

Now in order to find the equation for the first-order moment, say X , we multiply 

both sides of the equation (5) by X and then integrate it over the whole (X,Y) space. 
This results in the ordinary differential equations for the first-order moment 

 

( ) cos( );   ( )sin( )
d X d Y

t t t t
dt dt

α ω α ω= = .   (9) 

 

In deriving (9) we made an obvious transform of the co-ordinates YX ,  to ηξ ,  and then 

applied the definition (7) 

 

( cos( ), sin( ), , ) ( cos( )) ( , , , ) cos( )XP X t Y t t dXdY t P t d d X tω ω ω ξ ω ξ η ω ξ η ω− − = + = +∫ ∫ . (10) 

 

The equations for the second-order moments are as follows 

 

22
2( ) cos ( )

d X d X
t t

dt dt
α ω= + ,    (11) 

22
2( )sin ( )

d Y d Y
t t

dt dt
α ω= + .     (12) 

 
Summing up equations (11) and (12) we obtain the multi-particle factor 
 

2222 )( YXdttYX ++=+ ∫α .    (13) 

 
Following previous works [6, 12], the expression for the multi-particle factor can be 
re-written as follows 
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2

22 )exp()(∫+=+ dttitNYX ωα .    (14) 

 
The first term in the right side of (14) equal to the average number of electrons in the 
bunch N  affects the incoherent input and the second term gives the enhancement of 
radiation due to coherence effect. A minor difference between the coherence term in 
(14) and the one derived previously [12] is that it is strictly proportional to 2N  but not 
to )1( −NN . This effect arises due to fluctuation of the number of electrons in a bunch 

itself, which was taken into account in our analysis. Previous theoretical treatment 
considered bunches with a fixed number of electrons only (see also Appendix). 

Calculation of moments of higher orders with this method is too time-
consuming. The most straight approach that can be applied to estimate their values is 
to use characteristic function method [20]. As the next step in our analysis we will find 
the characteristic function and estimate the intensity fluctuation 

 
222 )()()( ωωωδ JJJ −= .    (15) 

 
It requires the fourth order moments to be calculated. 
 
4. The probability distribution function, characteristic function 
 

Now we solve (5) by taking Fourier transform of ( , , , )P X Y tω  over spatial co-

ordinates YX , . The resulting characteristic function for ∞→t  is given below 

 

( )
( )

( ) ( )( )( )2
1, , exp ( ) 1 exp cos sin

2
P k dt t ik t i tλ ω α ω λ ω

π

∞

−∞

 
= − − − − 

 
∫ . (16) 

 
The moments of any desired order can be found from (16) with the use of the well - 
known relation 
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( )
( )

( )
22

, ,
n m

n m
n m n mX Y P k

ki
π

λ ω
λ

+

+

∂
=

∂ ∂−
 with 0,0 == λk .   (17) 

 
Substituting (16) into (17) and taking the derivatives we find the expression for the in-
tensity fluctuation 
 

( )
( ) ( ) ( )

( ) ( )
( )

2
2 22

2 2
2
0

2 2
2 2

2

4 ( ) 2 ( ) cos 2 ( )sin

4 ( ) cos ( )cos 4 ( )sin ( )sin

4 ( )sin cos 8 ( ) cos ( )sin ( )sin cos

i t
J

N dt t e dt t t dt t t
J

dt t t dt t t dt t t dt t t

dt t t t dt t t dt t t dt t t t

ω
δ ω

α α ω α ω
ω

α ω α ω α ω α ω

α ω ω α ω α ω α ω ω

= + + +

+ + +

+ 

∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

 (18) 

 
There are two limiting cases of general interest. If the duration of the bunch τ  is long 

compared to the period of oscillations ωτ >> 1, we deal with the completely incoher-
ent case. Then equation (18) gives the following result 
 

( )
( ) NN

J

J
+= 2

2
0

2

ω

ωδ
.     (19) 

 
Thus, the deviation of intensity from the average value equals to this value when the 
source is incoherent, a result known since Rayleigh [23]. In the case of complete co-
herence the intensity fluctuation is as follows 
 

( )
( ) NNN

J

J
++= 23

2
0

2

64
ω

ωδ
.    (20) 

 
It is interesting to note, that contrary to the coherent emission from a bunch with a 
fixed number of particles (see Appendix), relation (20) predicts the noise in the coher-
ent radiation due to the fluctuation of number of electrons in the bunch. Fig. 2, 3 illus-
trate the behavior of the average spectral intensity and its fluctuation, calculated for  
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Fig.2. Average spectral intensity and its fluctuation  

for bunches of different waveforms 
 
 

two representative temporal bunch shapes – a Gaussian ( ) 2

2

exp
ττπ

α tNt −= and an ex-

ponential ( )
ττ

α tNt −= exp . Both bunches have equal number of particles 610=N  but es-

sentially different shape. We should note that the increase in steepness of the bunch 
shape appears naturally as a result of the self-impact on the bunch of its radiation 
forces [24]. Thus the exponential bunch with an idealized infinitely steep front may be 
used to estimate the upper limits of the radiation enhancement in the short wavelength 
spectral region. Fig.2. shows clearly that in both limiting cases of completely coherent 
and incoherent radiation the spectral intensity and its fluctuation do not depend on the  
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Fig.3. Noise to signal ratio for the bunches of different waveforms 

 
bunch shape. At the same time the bunch shape plays a key role when the frequency 
range of radiation enhancement is of interest. The exponential bunch with its steep 
front has radiation enhancement which occupies the frequency range two orders of 
magnitude broader than the bunch with Gaussian shape. It leads to the possibility to 
produce powerful high frequency radiation with moderate total length bunches. The 
spectral behavior of noise to signal ratio for bunches of different shapes is shown in 
Fig.3. It is inversely proportional to the square root of the number of particles in the 
bunch in the low frequency coherent limit and goes to unity in the high frequency in-
coherent limit. It should be noted here that the noise to signal ratio depends not only 
on the number of particles but on the bunch shape as well. Thus the noise of the expo-
nential bunch is larger than that from the Gaussian bunch provided we compare fre-
quency regions where they emit equal intensities. 
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 All the results presented above are valid for an arbitrary number of particles in 
the bunch. To get an analytic expression for the probability distribution function we 
have to consider the limiting case when the number of particles is large 1>>N . Fortu-
nately, this limit represents the main practical interest. It is easily done by a standard 
method [22] with expansion of the characteristic function (16) into series. Then the re-
sult reads as follows 
 

( ) ( ) ( )( )
( ) 














−
−−+−+−

−
−

= 2

22

2 4
exp

42
1),,(

cab
YYXXcYYaXXb

cab
YXP

π
ω . (21) 

 
Here the coefficients are defined by the following relationships 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

cos ;  sin ;

1 1cos ; sin ; sin cos
2 2

X t t dt Y t t dt

a t t dt b t t dt c t t t dt

α ω α ω

α ω α ω α ω ω

∞ ∞

−∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

= =

= = =

∫ ∫

∫ ∫ ∫
 (22) 

 
This probability density gives detailed information on the amplitude and the phase of 
the complex phasor of the radiation field. The distribution of the intensity is as follows  
 

( ) ( ) ( )( )
( )

2

2
0

2 2

2

1( , ) exp ( )
4 4

cos sin cos sin
( )

4

P I F d
ab c

b IG X a IG Y c IG X IG Y
F

ab c

π

ω ψ ψ
π

ψ ψ ψ ψ
ψ

= −
−

− + − + − −
=

−

∫
 (23) 

 
Here we have introduced ( ) ( )ωω JJI /= , the ratio of the intensity to the average inten-

sity, and 2 2G X Y= + , given by (14). 

The probability distribution (23) takes an especially simple form if the radiation 

is incoherent. Actually, in this case 0 ;
4

 ;0  ;0 ===== cNbaYX ; G N=  , then (23) 

gives  Rayleigh distribution 

. 
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( ) IeIP −= .      (24) 

 
In the general case the integration in (23) still has to be done numerically. 
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Fig.4. Intensity distribution function for Gaussian bunch waveform 

 
 

Fig.4. gives an example of intensity distribution function, calculated for the 
Gaussian bunch shape in different spectral regions. In the range of high frequencies 
where radiation is incoherent it reproduces the Rayleigh distribution. As the coherence 
effects begin to prevail, the maximum of the distribution shifts towards the average in-
tensity and the distribution width decreases. It is interesting to note that even in the re-
gion where the enhancement of radiation due to coherence is strongly pronounced the 
width of the distribution is still quite large. The lower the frequency the closer the in-
tensity distribution converges to the Gaussian one. 
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Conclusion 
 

The kinetic equation for the probability density of the complex vector of total 
radiation field emitted by an electron bunch of arbitrary shape has been formulated, 
and its general solution has been found. The results can be easily generalized to multi-
dimension cases. We also described both the spectrum and noise properties of the ra-
diation in the whole range of conditions, from coherent to incoherent case. As a result, 
the problem has reached the status of a mathematical theorem rather than a semi-
empirical formula based on heuristic arguments. Our results show that the statistical 
behavior of the radiation may differ substantially from the results one could get using 
the existing approach. The results will be useful for the analysis of high-power sources 
of microwave, terahertz and X ray radiation based on pulsed electron beams. 
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Appendix 
 

For the sake of completeness here we present some results concerning the elec-
tron bunch with a fixed number of particles. Some of them are already obvious. For 
example, in the case of complete coherence there will be no noise while in the inco-
herent case the radiation of the bunch with a fixed number of particles should exhibit 
the same properties as the radiation from the fluctuating bunch.  

Now the problem is formulated as follows. We look for the probability distribu-
tion function for the field phasor X,Y provided the bunch is composed of N  particles 
and the probability to observe a particle within a time interval dttt +, equals to ( )f t dt . 

The consideration similar to that presented in section 3 leads to the following equation 
which governs the probability distribution function 

 

( ) ( ) ( )( ) ( )1 , cos , sinN NP X Y dtP X t Y t f tω ω+ = − −∫ .   (25) 

 
Here ( )YXPN ,  is the probability density to observe the point YX , in the bunch con-

taining N  electrons. The characteristic function for the probability density has the fol-
lowing form 
 

( )
( )

( ) ( ) ( )( )( )2
1, exp cos sin

2

N

NP k dtf t i k t tλ ω λ ω
π

= − +∫ .   (26). 

 
The moments of the distribution are found by taking the derivatives of (26) according 
to (17). It gives the following results for the average intensity and its fluctuation 
 

( )
2

2 2 1 ( )exp( )X Y N N N f t i t dtω+ = + − ∫    (27) 

 
and 
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( )
( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )( )

( )( )

2
2

2
2
0

2 2
2 2

2 2
2

4 1 2 ( ) cos ( )sin

( )sin ( )sin 2 1 ( )cos

( )sin 4 1 ( )cos sin

8 1 2 ( )sin ( )cos ( )sin cos

J
N N N dtf t t dtf t t

J

dtf t t dtf t t N N dtf t t

dtf t t N N dtf t t t

N N N dtf t t dtf t t dtf t t t

δ ω
ω ω

ω

ω ω ω

ω ω ω

ω ω ω ω

= − − 

 + + −  
+ + −

+ − − +

∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

  (28) 

 
The essential feature of (28) is that in the incoherent limit it gives 
 

( )
( ) NN

J

J
−= 2

2
0

2

ω

ωδ
.     (29). 

 
In the coherent limit (28) gives the obvious result with zero noise.  
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