РОССИЙСКАЯ АКАДЕМИЯ НАУК

ПРЕПРИНТ

А.И.ГОЛОВАШКИН

7

ТЕПЛОВЫЕ ХАРАКТЕРИСТИКИ ВТСП СИСТЕМ

Тепловые характеристики ВТСП систем¹

А.И.Головашкин

Содержание	Стр.
Участники работы на разных этапах	3
Какие ВТСП системы изучались в последние годы	4
Цели исследования	4
Что обнаружено	5
Иллюстрации наблюдавшихся эффектов	6
1. Аномалия теплового расширения при низких температурах	6
2. Влияние магнитного поля	7
3. Аномалия скоростей звука при низких температурах и влияние	
на нее магнитного поля	9
4. Зависимость аномалии теплового расширения от уровня	
легирования	11
5. Проявление псевдощели в тепловых характеристиках	12
MgB ₂ – уникальный ВТСП материал с двумя сверхпроводящими щелями	15
1. Температурная зависимость теплоемкости MgB ₂	16
2. Температурная зависимость теплопроводности MgB ₂	18
3. Температурная зависимость теплового расширения MgB_2	21
4. Влияние магнитного поля на аномалию теплового расширения	
MgB_2	22
5. Заключение и выводы по результатам исследования MgB ₂	23
Заключение: что дальше?	24
Литература	27

Аннотация

Сделан краткий обзор работ лаборатории сверхпроводимости ОФТТ ФИАН, в которых в течение последних нескольких лет изучались тепловые свойства ВТСП систем. В этих работах обнаружены аномальное (отрицательное) тепловое расширение при низких температурах в ВТСП системах, аномально сильное влияние относительно небольших магнитных полей на коэффициент теплового расширения в области этих аномалий, наличие второй температурной области с аномальным поведением тепловых характеристик в ВТСП соединении MgB₂, находящейся при температурах значительно ниже критической.

^ТПрепринт подготовлен по докладу для семинара ОФТТ ФИАН 25-2-2005 г.

Участники работы на разных этапах.

В работах, обзор которых сделан в настоящем докладе, участвовали на разных этапах:

```
Н.В.Аншукова – ФИАН,
А.П.Русаков – МИСИС,
Л.И.Иванова – МИСИС,
Д.А.Шулятев – МИСИС,
И.Б.Крынецкий – МГУ,
Б.М.Булычев – МГУ,
А.А.Минаков – ИОФАН.
```

Часть образцов соединения $Bi_2Sr_2CuO_6$, исследованных в указанных работах, любезно предоставлен Г.А.Калюжной. Рентгеновские исследования выполнены В.П.Мартовицким, исследование состава и электронномикроскопические исследования ряда образцов — С.Г.Черноок.

Какие ВТСП системы изучались в последние годы.

ВТСП системы – это системы, в которых имеются ВТСП соединения.

В течение последних нескольких лет в лаборатории сверхпроводимости совместно с МИСИС, МГУ и ИОФАНом изучались следующие ВТСП системы:

- 1. $La_{2-x}Sr_xCuO_4$ (LSCO).
- 2. Ba_{1-x}K_xBiO₃ (BKBO) и BaPb_xBi_{1-x}O₃ (BPBO).
- 3. $Bi_2Sr_2CuO_6$ (Bi-2201).
- 4. MgB_2 .

В настоящее время изучаются системы:

- 1. $Bi_2Sr_{2-x}La_xCuO_6$ (Bi-2201+La).
- 2. $(Sr_{1-x}La_x)_3Ru_2O_7$ (SLRO).

Последняя система – рутенат – не является ВТСП системой, однако представляет значительный интерес как слоистый аналог ВТСП систем.

Цели исследования.

Исследование устойчивости ВТСП систем. Исследование связи аномалий свойств ВТСП систем с природой сверхструктурного упорядочения, с механизмом их сверхпроводимости.

Что обнаружено.

- 1. Аномальное (отрицательное) тепловое расширение при низких температурах.
- 2. Сильное влияние умеренных магнитных полей (2-4Тл) на коэффициент теплового расширения в области аномалии.
- 3. Наличие анизотропии теплового расширения в монокристаллах при низких температурах (аномалия для расширения в плоскости "ab" и отсутствие аномалии вдоль оси "c"; монокристаллы $La_{2-x}Sr_xCuO_4$).
- 4. Зависимость аномалии теплового расширения при низких температурах от уровня легирования (в «хорошем» металле аномалия отсутствует; $Ba_{1-x}K_xBiO_3$).
- 5. Возможное проявление псевдощели в тепловых характеристиках (в тепловом расширении; монокристаллы Bi-2201).
- 6. Наличие аномалий теплоемкости, теплопроводности, теплового расширения, обусловленных второй сверхпроводящей щелью в MgB_2 .

Иллюстрации наблюдавшихся эффектов.

1. Аномалия теплового расширения при низких температурах.

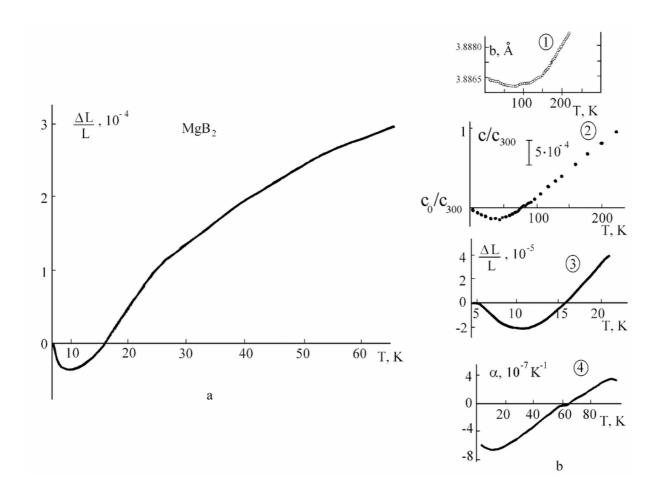


Рис.1. Температурная зависимость теплового расширения $\Delta L/L$ для MgB_2 (a) и сравнение ее с результатами для других $BTC\Pi$ (b):

- **1.** YBa₂Cu₃O_{7-x} H.You et al. Phys. Rev. B43, 3660 (1991).
- **2.** Bi₂Sr₂CaCu₂O₈ Z.J.Yang et al. J. Supercond. **8**, 223 (1995).
- **3.** La_{2-x}Sr_xCuO₄ (x=0.1, "ab"-плоскость) наши данные.
- **4.** $Ba_{1-x}K_xBiO_3$ (x=0.13, α -коэффициент теплового расширения) наши данные.

2. Влияние магнитного поля.

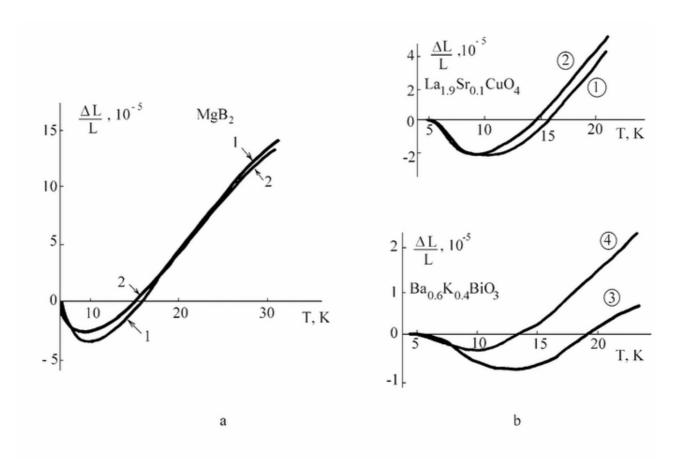


Рис.2. Влияние магнитного поля Н на температурную зависимость теплового расширения (наши данные):

а. $\mathbf{MgB_2}$ (кривая 1 — H=0; кривая 2 — H=3.6Тл);

b. $La_{1.9}Sr_{0.1}CuO_4$ (кривая 1 — H=0; кривая 2 — H≈4Тл);

 $\mathbf{Ba_{0.6}K_{0.4}BiO_3}$ (кривая 3 — H=0; кривая 4 — H=4Тл).

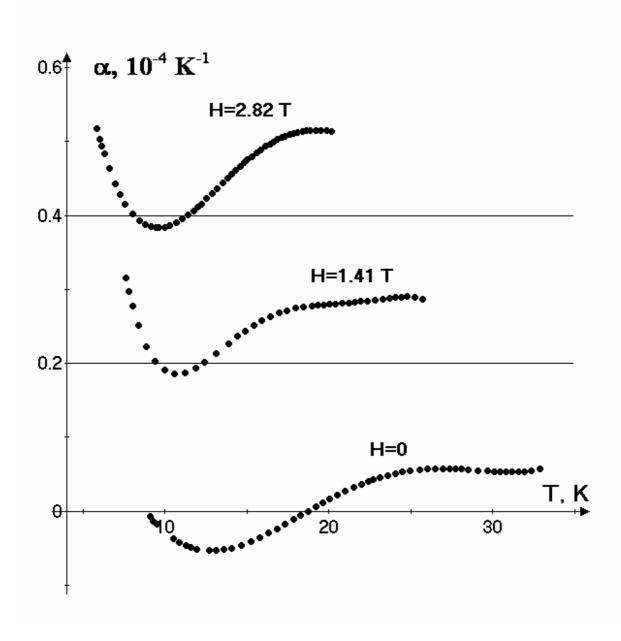


Рис.3. Влияние магнитного поля на коэффициент линейного теплового расширения α =(1/L)dL/dT монокристалла $\mathbf{Bi_2Sr_2CuO_6}$ при низких температурах в области аномалии α <0. Кривые для H≠0 сдвинуты по оси ординат на $0.2 \cdot 10^{-4} \text{K}^{-1}$ и $0.4 \cdot 10^{-4} \text{K}^{-1}$.

3. Аномалия скоростей звука при низких температурах и влияние на нее магнитного поля.

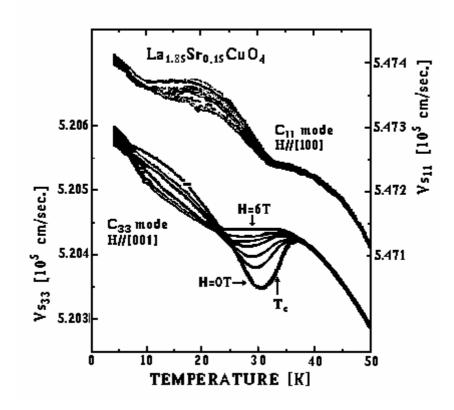


Рис.4. Аномалии упругих свойств (скоростей звука) монокристалла $La_{1.85}Sr_{0.15}CuO_4 \text{ и влияние на них магнитных полей.}$ T.Hanaguri et al. Physica В **194-196**, 1579 (1994).

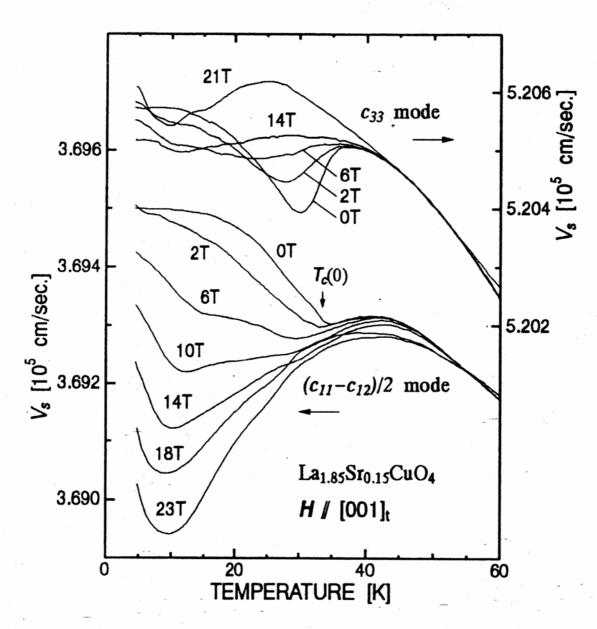


Рис.5. Аномалии упругих свойств (скоростей звука) монокристалла $La_{1.85}Sr_{0.15}CuO_4$ и влияние на них сильных магнитных полей до 23Тл. Т. Hanaguri et al. Physica В **194-196**, 1579 (1994).

Магнитное поле сначала «давит» аномалию, а затем усиливает ее.

<u>4. Зависимость аномалии теплового расширения от уровня</u> <u>легирования.</u>

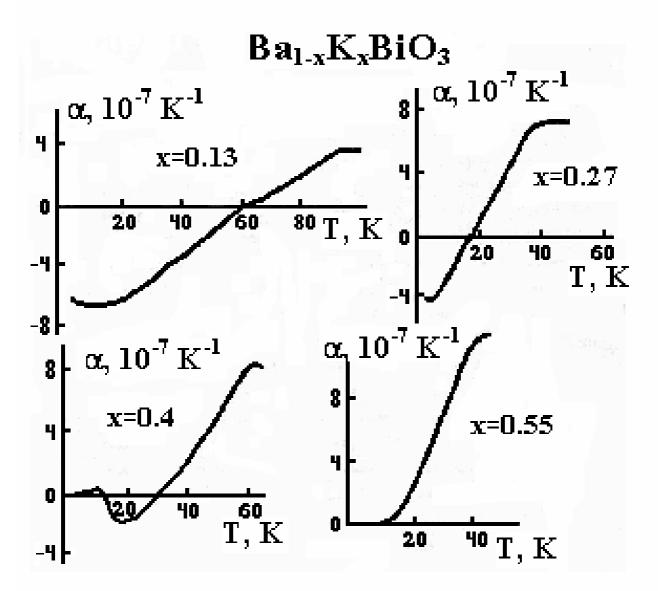


Рис.6. Тепловое расширение $\mathbf{Ba_{1-x}K_xBiO_3}$. x=0.13 — диэлектрик; x=0.27 — полупроводник; x=0.4 — оптимальное легирование (ВТСП); x=0.55 — «хороший» металл.

5. Проявление псевдощели в тепловых характеристиках.

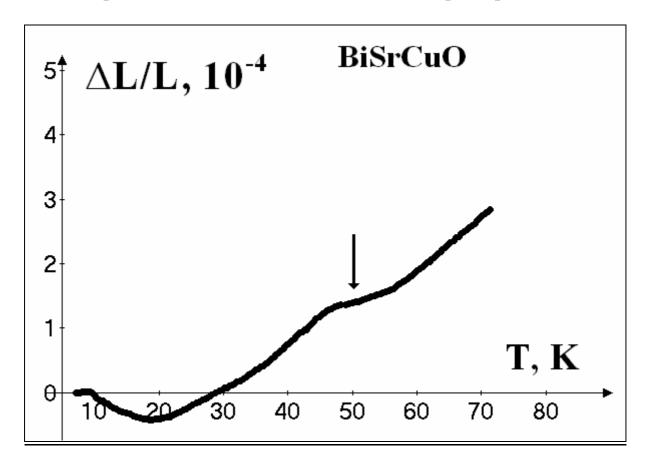


Рис.7. Тепловое расширение монокристалла ${\bf Bi_2Sr_2CuO_6}$ при низких температурах.

Стрелкой показана аномалия, связываемая с проявлением псевдощели.

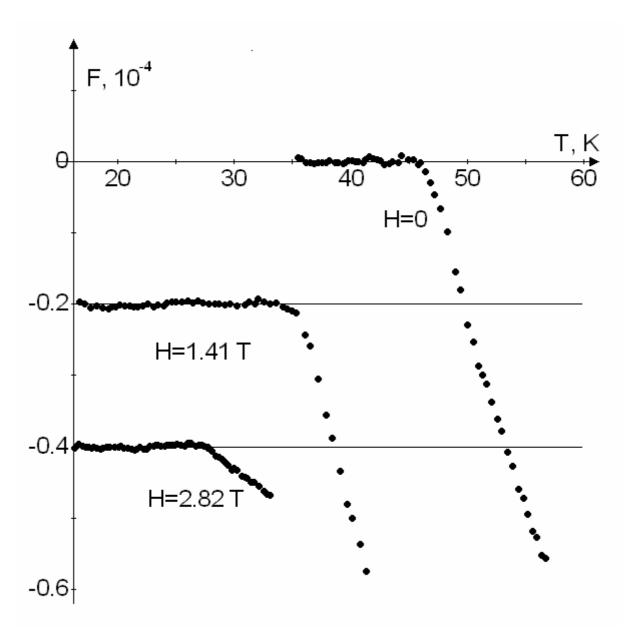


Рис. 8. Смещение положения аномалии теплового расширения монокристалла $Bi_2Sr_2CuO_6$, связываемой с появлением псевдощели, в магнитном поле. Результаты (величина F) представлены следующей форме: линейная экспериментальных данных вычиталась зависимость, экстраполированная из области низких температур. Для удобства сравнения, данные для $\Delta L/L$, соответствующие разным магнитным полям, сдвинуты по оси ординат на величины, кратные $0.2 \cdot 10^{-4} \, \text{K}^{-1}$.

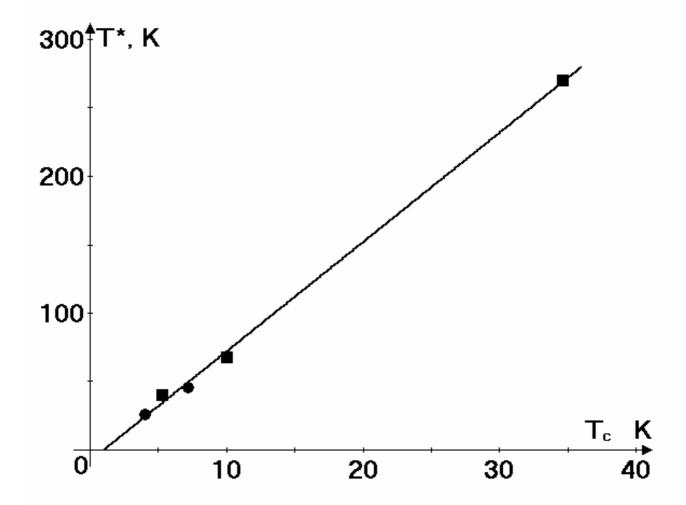


Рис. 9. Зависимость температуры возникновения псевдощели \mathbf{T}^* от \mathbf{T}_c . Кружками показаны полученные нами температурные положения соответствующих аномалий, квадратами — данные о \mathbf{T}^* из работ: Kugler M., Fischer Ø., Renner C., et al. Phys. Rev. Lett. **86**, 4911 (2001). Yurgens A., Winkler D., Claeson T., et al. Cond-mat. 0212562 (2002). Hou X.H., Zhu W.J., Li J.Q., et al. Phys. Rev. B, **50**, 496 (1994).

MgB₂ – уникальный ВТСП материал с двумя сверхпроводящими щелями.

<u>Измерялось</u> (на одинаково приготовленных образцах MgB_2):

- 1. Температурная зависимость теплоемкости С(Т).
- 2. Температурная зависимость теплопроводности К(Т).
- 3. Температурная зависимость теплового расширения при низких температурах и влияние на него магнитного поля.

Обнаружено:

- 1. Два скачка теплоемкости:
 - -при Т≈Тс≈40К;
 - -при T=10-12K.
- 2. Две области аномалии K(T): при T_c и при T=10-15 K.
- 3. Аномальное поведение теплового расширения при низких температурах $\alpha(T)$.
- 4. Сильное влияние магнитного поля на аномалию $\alpha(T)$.

1. Температурная зависимость теплоемкости С(Т).

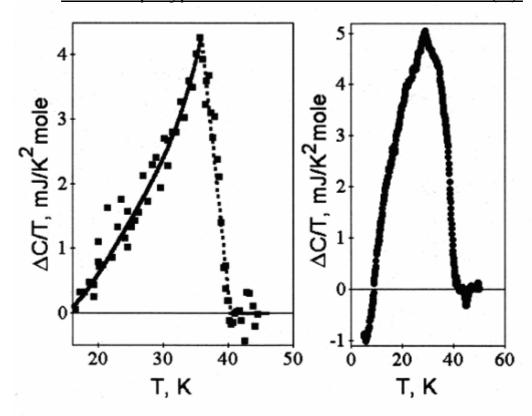


Рис.10. Скачки теплоемкости вблизи T_c для двух образцов MgB_2 с несколько отличающимися плотностями.

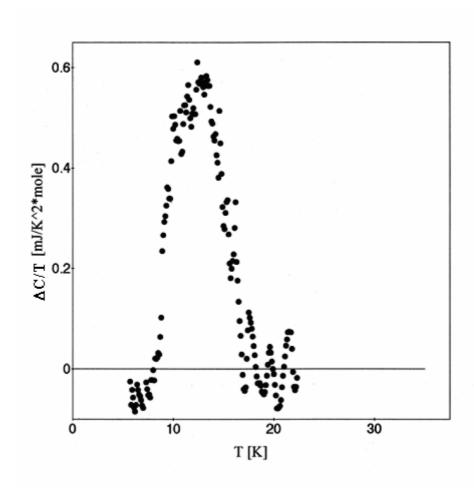


Рис.11. Скачок теплоемкости для образца MgB_2 при низких температурах.

2. Температурная зависимость теплопроводности K(T) MgB₂.

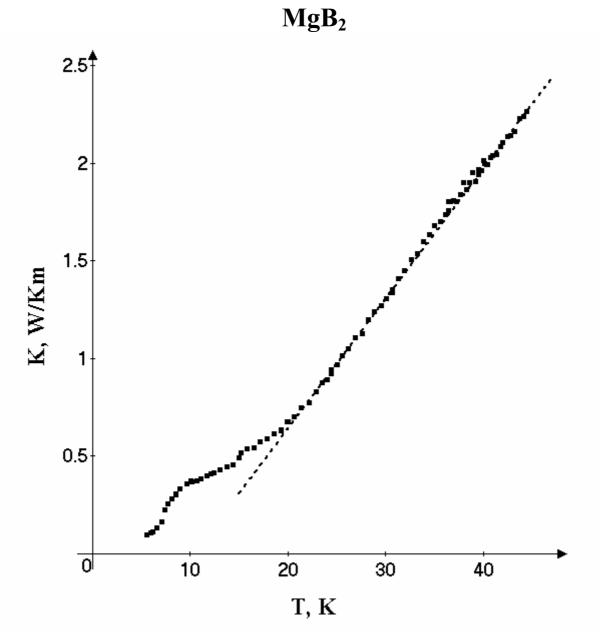


Рис.12. Температурная зависимость теплопроводности MgB_2 в интервале 5-45 К. Пунктирная линия проведена для удобства восприятия особенности в области температур, соответствующих сверхпроводящему переходу при T_c .

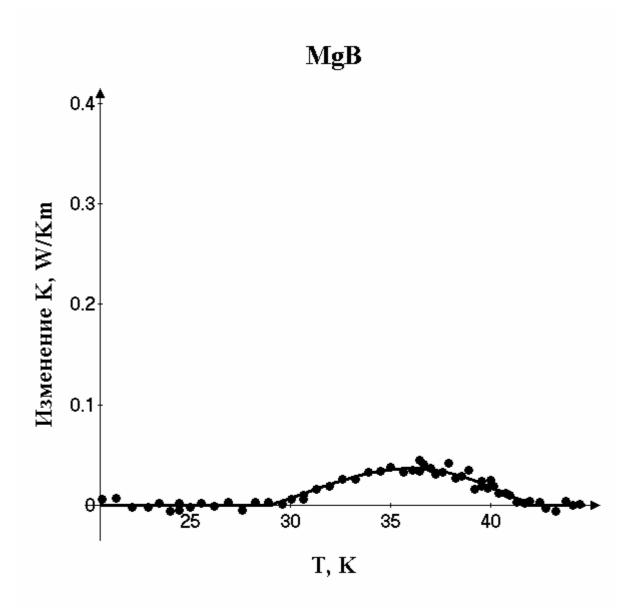


Рис.13. Особенность на температурной зависимости теплопроводности MgB_2 в области температур, соответствующих сверхпроводящему переходу при T_c . Получена вычитанием линейной части из экспериментальных данных.

$\mathbf{MgB_2}$

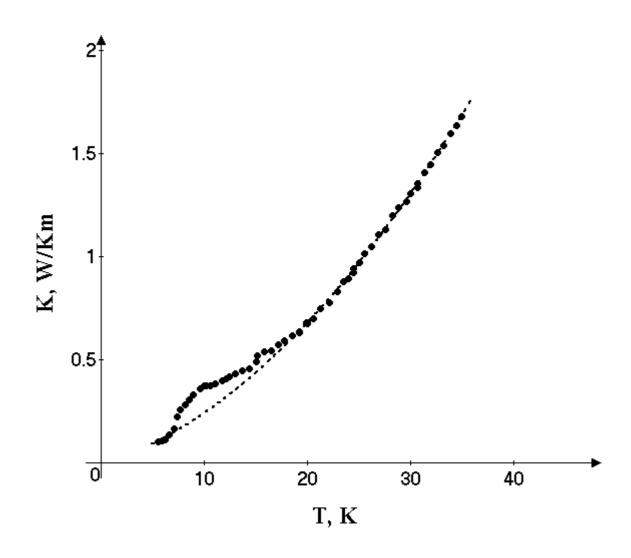


Рис.14. Особенность на температурной зависимости теплопроводности MgB_2 в области температур 10-15К. Пунктирная кривая проведена для удобства наблюдения.

3. Температурная зависимость теплового расширения при низких температурах MgB₂.

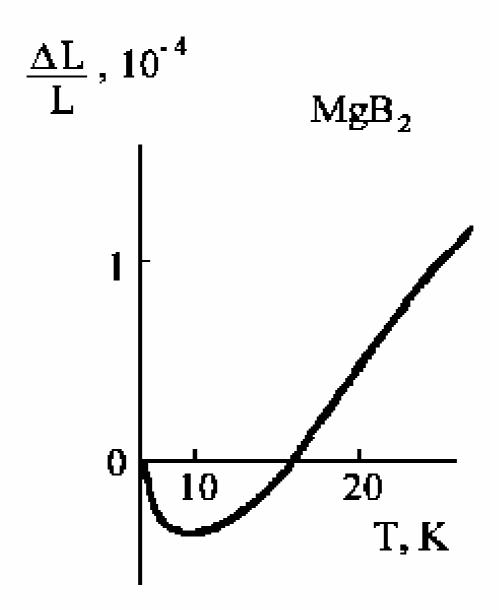


Рис.15. Температурная зависимость теплового расширения MgB₂ в области аномалии.

. Влияние магнитного поля на температурную зависимость теплового расширения MgB_2 в области аномалии.

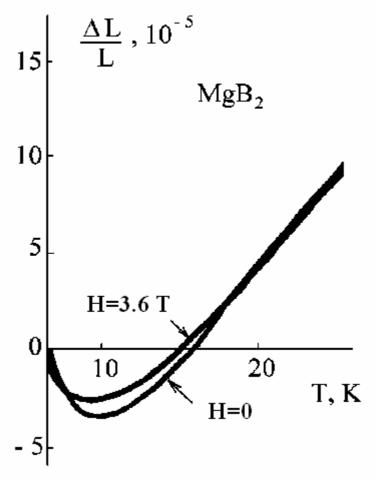


Рис.16. Влияние магнитного поля H на температурную зависимость теплового расширения MgB_2 в области аномалии. Кривая 1-H=0; кривая 2-H=3.6 T.

5. Заключение и выводы по результатам исследования MgB₂.

1. Были оценены различные электронные параметры для MgB_2 . Например, величина отношения скачка теплоемкости в области перехода в сверхпроводящее состояние ΔC к коэффициенту при линейной части теплоемкости γ и T_c : $\Delta C/\gamma T_c$.

Найдено, что $\Delta C/\gamma T_c$ =2.6-2.9 (разные образцы). По БКШ (слабая связь) $\Delta C/\gamma T_c$ =1.43.

Т.е. в MgB₂, несомненно, осуществляется сильная связь.

- 2. В MgB_2 наблюдается совпадение трех аномалий при T=10-12K: теплоемкости C(T), теплопроводности K(T) и теплового расширения. Хотелось бы сказать, что при T=10-12 К в MgB_2 наблюдается фазовый переход, связанный с открытием второй сверхпроводящей щели. Но, как показывают туннельные исследования (Я.Г.Пономарев), вторая (малая) щель открывается также при $T\approx40$ К и «тянется» до «своей» температуры $T\approx10-12$ К. В этой области температур наблюдается резкое возрастание ее величины (и плотности электронных состояний). На это и реагируют C(T) и K(T). Поэтому теоретики (Ю.В.Копаев, Е.Г Максимов) не считают, что при T=10-12 К происходит фазовый переход. Иногда такое поведение называют «**кроссовером**».
- 3. Для объяснения аномалии теплового расширения в MgB_2 наиболее привлекательной кажется идея Ю.В.Копаева: сумма двух щелей «держит» оптимальные параметры решетки, чтобы сохранить отрицательный вклад в энергию системы, связанный с наличием Бозе-конденсата. Хотя не исключено, что работают все три модели.
- 4. Наличие малой щели, т.е. второго Бозе-конденсата в MgB_2 , должно понижать T_c и Δ этого соединения («внутренний эффект близости»). Какова же была бы «истинная» T_c MgB_2 без второй группы электронов? И как убрать ее влияние?

Заключение: что же дальше?

Итак, уже для целого ряда ВТСП систем обнаружено аномальное (отрицательное) тепловое расширение $\alpha(T)$ при низких температурах и аномально сильное влияние относительно небольших (1-4 Тл) магнитных полей на $\alpha(T)$ в этой области температур. Однако, до сих пор не получено однозначного вывода о природе этих аномалий. Особенно интересен вопрос о природе сильного влияния магнитного поля на тепловое расширение, которое в стандартной модели теплового расширения должно быть пренебрежимо малым.

В настоящее время имеются, по крайней мере, 3 модели или идеи, объясняющие это явление:

- 1. **Феноменологическое объяснение** («стандартная модель»). Наличие отрицательного теплового расширения связывается с ростом плотности электронных состояний на уровне Ферми и T_c с давлением. Последнее действительно наблюдается во многих ВТСП системах. В свою очередь, эти эффекты могут быть связаны с ростом эффективной массы носителей заряда при увеличении давления, что возможно в зонной модели сильной связи с резонансным туннелированием.
- $(B3\Pi)$ Влияние волн зарядовой плотности на устойчивость кристаллической решетки ВТСП систем. В оксидных ВТСП возникает сверхструктурное упорядочение (ВЗП) в подрешетке кислорода. Без учета дополнительного кулоновского взаимодействия ВЗП с ионной решеткой структура ВТСП систем неустойчива, кристаллическая т.е. поперечных акустических фононов ω_{ТА} на границе зоны Бриллюэна стремится к нулю. Взаимодействие между ВЗП и решеткой приводит к тому, что частота ω_{TA} на границе зоны Бриллюэна становится положительной ($\omega_{TA} > 0$). С ростом Т или Н амплитуда ВЗП падает из-за увеличения экранирования, система становится менее стабильной, и область аномалии смещается в сторону низких температур.
- 3. **Идея Ю.В.Копаева** (для ВТСП). При Т=0 параметры системы оптимальны для достижения высоких Т_с. С ростом Т система должна выйти из области оптимальных параметров (тепловое расширение). Наличие значительного отрицательного вклада в энергию системы из-за перехода в сверхпроводящее состояние заставляет систему «подстраиваться», чтобы сохранить этот вклад. При более высоких Т это соответствует меньшим параметрам решетки. Магнитное поле уменьшает этот вклад, т.е. смещает область аномалии в сторону низких температур.

Для однозначного вывода необходимо исследовать другие ВТСП системы и слоистые соединения с другим типом катионной подрешетки. Примером последних являются рутенаты $(Sr_{1-x}La_x)_3Ru_2O_7$, которые являются несверхпроводящими аналогами слоистых ВТСП систем. Это двухслойные соединения, т. е. содержат блоки из двух плоскостей RuO_2 . В этом отношении

они аналогичны «двухслойному» ВТСП соединению $YBa_2Cu_3O_7$, которое имеет блоки из двух плоскостей CuO_2 .

В настоящее время нами начато исследование монокристаллов системы ${\bf Bi_2Sr_{2-x}La_xCuO_6}$, с целью изучения влияния недолегирования и перелегирования на аномалию $\alpha(T)$, и монокристаллов рутената $({\bf Sr_{1-x}La_x})_3{\bf Ru_2O_7}$, т.е. соединения с другим типом катионной подрешетки. Получены первые результаты.

На Рис.17 показаны температурные зависимости теплового расширения $\Delta L/L$ монокристалла ($Sr_{0.9}La_{0.1}$) $_3Ru_2O_7$ в нулевом магнитном поле и поле 3.53 Т.

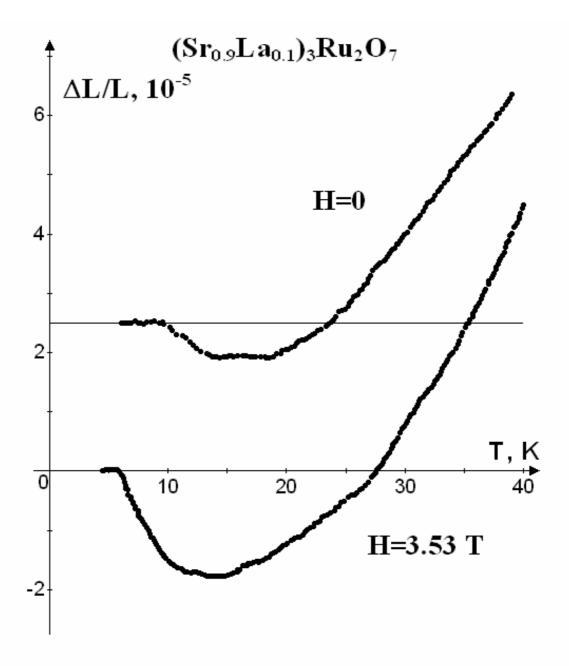


Рис.17. Температурные зависимости изменения длины $\Delta L/L$ монокристалла $(Sr_{0.9}La_{0.1})_3Ru_2O_7$ при H=0 и H=3.53 Т.

Интересно, что в рутенате магнитное поле не давит, а усиливает аномалию, хотя и смещает положение минимума коэффициента теплового расширения α в сторону низких температур. Возможно, наблюдаемая разница в поведении исследуемого рутената и ВТСП систем связана с тем, что в рутенате при низких температурах существуют ферромагнитные флуктуации, тогда как в ВТСП системах наблюдается антиферромагнитное упорядочение. Есть над чем подумать.

Литература.

Для данного препринта (и подготовленного доклада) использованы материалы следующих наших работ:

- 1. Н.В.Аншукова, А.И.Головашкин, Л.И.Иванова, И.Б.Крынецкий, А.П.Русаков. Аномальное влияние магнитного поля на тепловое расширение Ba_{1-x}K_xBiO₃, BaPb_xBi_{1-x}O₃ и La_{2-x}Sr_xCuO₄ при низких температурах. Письма в ЖЭТФ 71, №9, 550-553 (2000).
- 2. A.I.Golovashkin. High-Temperature Superconductors. IV Escuela Nacional de Fisica de la Materia Condensada (IV ENFMC) y I Encuentro Internacional de Fisica Aplicada a la Industria del Petroleo (I-EIFAIP). Resumenes. Octubre 9-13, 2000, Bucaramanga, Colombia, p.19-20 (2000).
- 3. A.I.Golovashkin, N.V.Anshukova, L.I.Ivanova, I.B.Krinetskii, A.P.Rusakov. Magnetostriction and thermal expansion of BaPb_yBi_{1-y}O₃ and Ba_{1-x}K_xBiO₃ at low temperatures. Physica B **284-288**, 1485-1486 (2000).
- 4. A.I.Golovashkin, N.V.Anshukova, L.I.Ivanova, I.B.Krinetskii, A.P.Rusakov. Strong influence of magnetic field on the thermal expansion anomaly in La_{2-x}Sr_xCuO₄ and Ba_{1-x}K_xBiO₃ systems. Physica C **341-348** 1945-1946 (2000).
- 5. А.И.Головашкин, А.П.Русаков. Экспериментальные исследования особенностей тепловых и электронных характеристик Ва_{1-х}K_xBiO₃ и других перовскито-подобных оксидных ВТСП систем. УФН **170**, №2, 192-195 (2000).
- 6. Н.В.Аншукова, Б.М.Булычев, А.И.Головашкин, Л.И.Иванова, И.Б.Крынецкий, А.П.Русаков. Влияние магнитного поля на аномалию теплового расширения MgB₂ при низких температурах. Краткие сообщения по физике, Москва, ФИАН, №7, 16-23 (2001).
- 7. N.V.Anshukova, B.M.Bulichev, A.I.Golovashkin, L.I.Ivanova, I.B.Krinetskii, A.P.Rusakov. Thermal expansion anomaly of MgB₂ at low temperatures and magnetic field influence. Physica C **377**, 190-195 (2002).
- 8. Н.В.Аншукова, Б.М.Булычев, А.И.Головашкин, Л.И.Иванова, А.А.Минаков, А.П.Русаков. Температурные зависимости теплоемкости и теплопроводности MgB₂ при низких температурах. Краткие сообщения по физике, Москва, ФИАН №4, 24-34 (2002).
- 9. Н.В.Аншукова, Б.М.Булычев, А.И.Головашкин, Л.И.Иванова, И.Б.Крынецкий, А.А.Минаков, А.П.Русаков. Аномальное поведение тепловых характеристик MgB_2 при низких температурах. ЖЭТФ **124**, №1(7), 80-88 (2003).
- 10. Н.В.Аншукова, Б.М.Булычев, А.И.Головашкин, Л.И.Иванова, И.Б.Крынецкий, А.П.Русаков. Аномалии теплового расширения MgB₂ при низких температурах. ФТТ **45**, №1, 8-11 (2003).
- 11. Н.В.Аншукова, Б.М.Булычев, А.И.Головашкин, Л.И.Иванова, А.А.Минаков, А.П.Русаков. Аномалии теплоемкости и теплопроводности MgB_2 при низких температурах. ΦTT **45**, $\mathbb{N} \ 7$, 1153-1158 (2003).

- 12. Н.В.Аншукова, А.И.Головашкин, Л.И.Иванова, И.Б.Крынецкий, А.П.Русаков, Д.А.Шулятев. Отрицательное тепловое расширение при низких температурах и его сильная зависимость от магнитного поля в Bi₂Sr₂CuO₆. Краткие сообщения по физике, Москва, ФИАН №8, 32-40 (2003).
- 13. Н.В.Аншукова, А.И.Головашкин, Л.И.Иванова, А.П.Русаков. Влияние сверхструктурного упорядочения на свойства оксидных ВТСП систем. ЖЭТФ **123**, №6, 1188-1199 (2003).
- 14. Н.В.Аншукова, А.И.Головашкин, Л.И.Иванова, И.Б.Крынецкий, А.П.Русаков. Аномалия теплового расширения $Bi_2Sr_2CuO_6$ при низких температурах. Научная сессия МИФИ-2004. Сборник научных трудов. М., 2004г. Т.4, сс.112-113.
- 15. Н.В.Аншукова, А.И.Головашкин, Л.И.Иванова, И.Б.Крынецкий, А.П.Русаков, Д.А.Шулятев. Аномалия теплового расширения Bi₂Sr₂CuO₆ при низких температурах. ФТТ **46**, №8, 1356-1359 (2004).
- 16. Н.В.Аншукова, А.И.Головашкин, Л.И.Иванова, А.П.Русаков, Б.М.Булычев, И.Б.Крынецкий. Аномальные тепловые свойства MgB₂. Труды 1^{ой} Международной конференции «Фундаментальные проблемы высокотемпературной сверхпроводимости» (ФПС'04), Москва-Звенигород, 18-22 октября 2004 года, с. 91-92.
- 17. А.И.Головашкин, Н.В.Аншукова, Л.И.Иванова, И.Б.Крынецкий, А.А.Минаков, А.П.Русаков. Проявление двух сверхпроводящих щелей в тепловых характеристиках MgB₂. Научная сессия МИФИ-2004. Сборник научных трудов. М., 2004г. Т.4, сс.114-115.
- 18. А.И.Головашкин, Н.В.Аншукова, Л.И.Иванова, А.П.Русаков, Д.А.Шулятев, И.Б.Крынецкий. Аномальное тепловое расширение монокристаллов Bi₂Sr₂CuO₆ при низких температурах и влияние на него магнитного поля. Труды 1^{ой} Международной конференции «Фундаментальные проблемы высокотемпературной сверхпроводимости» (ФПС'04), Москва-Звенигород, 18-22 октября 2004 года, с. 101-102.
- 19. А.И.Головашкин, А.М.Цховребов, А.П.Русаков, Г.В.Кулешова. Аномалии теплового расширения ВТСП: микроскопические следствия феноменологической модели. Труды 1^{ой} Международной конференции «Фундаментальные проблемы высокотемпературной сверхпроводимости» (ФПС'04), Москва-Звенигород, 18-22 октября 2004 года, с. 199-200.
- 20. Yu.V.Kopaev, A.I.Golovashkin, N.V.Anshukova, L.I.Ivanova, I.B.Krinetskii, A.P.Rusakov. Thermal expansion anomaly in Bi₂Sr₂CuO₆ at low temperatures. Доклад на Международной конференции New³SC-5 (Chungking, China, 11-16 June 2004).
- 21. Н.В.Аншукова, А.И.Головашкин, Л.И.Иванова, И.Б.Крынецкий, А.П.Русаков, Д.А.Шулятев. Исследование теплового расширения монокристаллов ($Sr_{1-x}La_x$) $_3Ru_2O_7$ при низких температурах. ФТТ (2005, в печати).

- 22. Н.В.Аншукова, А.И.Головашкин, Л.И.Иванова, И.Б.Крынецкий, А.П.Русаков, Д.А.Шулятев. Низкотемпературная аномалия теплового расширения монокристаллов (Sr_{1-x}La_x)₃Ru₂O₇ и влияние на нее магнитного поля. Краткие сообщения по физике, ФИАН, Москва (2005, в печати).
- 23. А.И.Головашкин, Н.В.Аншукова, Л.И.Иванова, И.Б.Крынецкий, А.П.Русаков, Д.А.Шулятев. Низкотемпературное тепловое расширение монокристаллов ($Sr_{1-x}La_x$)₃ Ru_2O_7 . Научная сессия МИФИ-2005. Сборник трудов, т.4, 154-155 (2005).