

В.А.БАСКОВ, В.В. КИМ, Б.И. ЛУЧКОВ, В.Ю. ТУГАЕНКО, В.А. ХАБЛО

ПРЕПРИНТ

14

ТРАНСФОРМАЦИЯ АМПЛИТУДНОГО СПЕКТРА И РЕЖЕКЦИЯ ПО НАПРАВЛЕНИЮ

ТРАНСФОРМАЦИЯ АМПЛИТУДНОГО СПЕКТРА И РЕЖЕКЦИЯ ПО НАПРАВЛЕНИЮ

В.А. Басков^{*}, В.В. Ким, Б.И. Лучков¹, В.Ю. Тугаенко¹, В.А. Хабло

АННОТАЦИЯ

Аномальные электромагнитные ливни в ориентированных кристаллах существенно отличаются от обычных ливней в аморфном веществе и разориентированных кристаллах. Использование коэффициента трансформации амплитудного спектра β дает возможность точно определить степень отличия аномальных вливней от обычных при изменении энергии частиц и угла ориентации кристалла. Введение коэффициента режекции R позволяет выделить заданное направление движения частиц и вероятность попадания в это направление частиц с других направлений.

THE TRANSFORMATION OF AN AMPLITUD SPECTR AND THE REJECTION ON A DIRECT

V.A. Baskov*, V.V. Kim, B.I. Luchkov¹, V.Yu. Tugaenko¹, V.A. Khablo

ABSTRACT

Anomalous electromagnetic showers in oriented crystals differ substantially from common ones in amorphous substance and disoriented crystals. Using the transformation coefficient β makes possible to determine exactly how anomalous showers differ from common ones when the particle energy and the oriented angle of the crystal are changing. Introduction of the rejection coefficient R allows us to select an azimuth direction of the particle motion and determine the probability of particles from other directions having this direction.

1- Инженерно-физический институт, г. Москва.

* - baskov@x4u.lebedev.ru

При прохождении фотонов (электронов или позитронов) через ориентированный кристалл, происходит резкое возрастание сечений электродинамических процессов излучения электронами (позитронами) и рождения электрон-позитронных пар фотонами, что приводит к развитию нестандартных (аномальных) электромагнитных ливней [1,2,3]. В аномальных ливнях увеличивается выход числа заряженных частиц N_e и числа фотонов N_γ [4,5,6]. Увеличение частиц сказывается на изменение отклика детектора, регистрирующего ливни.

Данная работа посвящена методу, позволяющему использовать особенности развития аномального ливня и определить степень изменения отклика детектора, перед которым находиться кристалл. Метод дает возможность определить степень ориентации кристалла, направление входа электрона (позитрона) и фотона в кристалл, величину выхода среднего числа Работа частиц и т.д. является заряженных ОДНИМ ИЗ результатов экспериментальных исследований, проведенных на электронном канале ускорителя ИФВЭ на установке "Каскад" [7].

На рис. 1 представлены амплитудные спектры с одинаковым числом событий в спектре с черенковского счетчика (ЧС) толщиной в 1 радиационную длину, находящегося за кристаллом кремния толщиной 20 мм (T = 293°). Диапазон энергий γ - квантов, падающих на кристалл, составлял $E_{\gamma} = 3 \div 5$ ГэВ. На рис. 1 кривая 1 - кристалл разориентирован $\Theta \ge 200$ мрад (Θ - угол между импульсом частицы и осью (плоскостью) кристалла), кривая 2 - кристалл ориентирован осью <110> на пучок γ - квантов $\Theta = 0$ мрад. Видно существенное различие спектров. Изменение формы спектра в случае ориентированного кристалла выразилось в "перекачке" амплитуд с меньшими номерами каналов в амплитуды с большими номерами каналов в правую часть спектра. Это приводит к изменению средней амплитуды спектра, связанной с его формой. В случае ориентации кристалла вдоль оси <110> амплитуда

3

спектра увеличилась с $\langle A_p \rangle = 12$ канала до $\langle A_o \rangle = 18$, а отношение амплитуд составило $\langle A_o \rangle / \langle A_p \rangle = 1,5$. Можно ввести коэффициент, который был бы чувствителен к изменению формы спектра и соответственно чувствителен к изменению параметров ливня в зависимости от: ориентации и толщины кристалла, энергии γ - квантов (электронов и позитронов). Под параметрами ливня понимаются соответствующий спектр энерговыделения, множественность заряженных частиц и т. д. Такой коэффициент был введен и использован в работах [2,8] - коэффициент трансформации спектра - β :

$$\beta = \alpha_{\rm o} / \alpha_{\rm p}. \tag{1}$$

α₀ и α_p - отношение полного числа событий в правой части спектра к полному числу событий в левой части спектра относительно некоторого выбранного канала соответственно в спектрах ориентированного и разориентированного кристалла:

$$a_{p} = \sum_{i=m+1}^{n} N_{i} / \sum_{i=1}^{m} N_{i}$$

$$a_{o} = \sum_{i=m+1}^{k} N_{i} / \sum_{i=1}^{m} N_{i}$$
(2)

где N_i - число событий в і канале спектров; k и n - максимальные каналы спектров с ненулевым числом событий; т - канал, относительно которого происходит трансформация; ј - начальный канал в спектре ориентированного кристалла с ненулевым числом событий. Если спектры при разориентированном и ориентированном кристалле перекрываются ($n \ge j$), то выбор канала m может осуществляться как произвольно в диапазоне $j \le m \le n$, так и по заданному критерию. Критерием может служить одинаковое число событий в некотором канале обоих спектров, максимальное число событий в каком-либо канале спектра разориентированного кристалла относительно

i=i

i=m+1

числа событий в других каналах и так далее. Если спектры полностью расходятся (n < j), то для каждого спектра вводиться свой канал трансформации, например, m = n для спектра при разориентированном кристалле и m = j для спектра при ориентированном кристалле. В этом случае

$$a_{p} = N_{n} / \sum_{i=1}^{n-1} N_{i}$$

$$a_{o} = \sum_{i=j+1}^{k} N_{i} / N_{j}$$
(3)

где N_n – не нулевое число событий в n канале спектра разориентированного кристалла; N_j – ненулевое число событий в j канале спектра ориентированного кристалла.

На рис. 2 показано изменение коэффициента трансформации спектра β в зависимости от энергии γ -квантов, полученное при анализе амплитудных спектров, снимаемых с СЧ, перед которым находился кристалл вольфрама толщиной 1 мм (ось ориентации <111>). С увеличением энергии γ -квантов форма спектра меняется , приводя к росту β (коэффициент β достигает ~2 при < E_{γ} > = 26 ГэВ).

Изменение коэффициента трансформации спектра β от угла ориентации кристалла кремния Θ толщиной 20 мм относительно оси <110> при энергии γ -квантов $E_{\gamma} = 3 \div 5$ ГэВ представлено на рис. 3 [9]. Из рисунка видно, что в отличие от разориентированного состояния ($\Theta = 200$ мрад), при котором $\beta = 1$, ориентация кристалла ($\Theta = 0$ мрад) доводит коэффициент трансформации до $\beta = 2,4$. Отношение средних амплитуд, как было отмечено, в этом случае составляет только $\eta = 1,5$.

Представляет интерес ввести коэффициент режекции по направлению. С его помощью можно с определенной вероятностью измерить в общем потоке

γ-квантов, направленных вдоль кристаллографической оси, долю γ-квантов, направленных под конкретным углом Θ к оси. То есть, помощью коэффициента режекции можно выделять γ-кванты (электроны или позитроны) в данном направлении относительно заранее заданного [10].

Режекция по направлению (R) определяется как отношение эффективности регистрации детектором за кристаллом (сцинтилляционный счетчик, черенковский счетчик и т. д.) ү-квантов (электронов, позитронов), прошедших разориентированный кристалл, к эффективности регистрации ү-квантов (электронов, позитронов), прошедших ориентированный кристалл:

$$R = \varepsilon_p / \varepsilon_o. \tag{4}$$

Здесь эффективности регистрации при разориентированном и ориентированном кристалле определены соответственно как:

$$\varepsilon_{p} = \sum_{i=j}^{n} N_{i}(p) / \sum_{i=1}^{n} N_{i}(p)$$

$$\varepsilon_{o} = \sum_{i=j}^{k} N_{i}(o) / \sum_{i=1}^{k} N_{i}(o)$$
(5)

где N_i - число событий в і канале амплитудного спектра; $\sum_{i=1}^{n} N_i(p)$, $\sum_{i=1}^{k} N_i(o)$ - полное число событий в амплитудных спектрах при соответственно разориентированном и ориентированном кристалле; n и k - число каналов,

i=j

i=1

разориентированном и ориентированном кристалле, п и к - число каналов, занимаемых спектрами; ј канал, относительно которого происходит режекция. Выбор ј можно осуществлять по разным критериям. Один из них приведен ниже.

Можно количественно оценить режекцию γ -квантов по направлению на примере кристалла кремния толщиной 20 мм, через который проходят γ -кванты с энергией $E_{\gamma} = 3 \div 5$ ГэВ (ось ориентации <110>) (рис. 1). В

амплитудном спектре при разориентированном кристалле определяется

среднее значение канала $\langle i \rangle = \sum_{i=1}^{n} i \cdot N_i(p) / \sum_{i=1}^{n} N_i(p)$ и ошибка среднего $\sigma_{\langle i \rangle}$. Можно взять, например, пороговый канал j, отличающийся от среднего на 6 стандартных отклонений: j = $\langle i \rangle + 6 \cdot \sigma_{\langle i \rangle}$. В этом случае режекция составляет $R(6\sigma_{\langle i \rangle}) = 0,005 \pm 0,002$. Эта режекция определялась для углов $\Theta \ge 200$ мрад по отношению к углу $\Theta = 0$ мрад (ось ориентации $\langle 110 \rangle$). Величина $R = R(6\sigma_{\langle i \rangle})$ означает, что для этих условий в амплитудном спектре от γ -квантов, прошедших кристалл параллельно оси $\langle 110 \rangle$, с вероятностью 0,5 \pm 0,2% можно зарегистрировать γ -кванты, прошедшие кристалл под углом $\Theta \ge 200$ мрад к оси.

При повышении энергии частиц величина режекции уменьшается, поскольку для каждой энергии при ориентации кристалла средняя величина множественности заряженных частиц и энерговыделение в ливне увеличивается, а это приводит к сдвигу амплитудных спектров в каналы с большими номерами и соответственно к лучшему их разделению [6]. Это видно из рис. 4, на котором представлено изменение коэффициента режекции от энергии γ -квантов, падающих на кристалл вольфрама толщиной 1 мм (T = 77°K). Режекция определялась для углов $\Theta \ge 0$ (ось ориентации <111>) по отношению к углу $\Theta = 23$ мрад с помощью ЧС при 1 $\sigma_{<i>>}$.

Зависимость коэффициента режекции и эффективность регистрации электронов от толщины кристалла t_w и от ј представлена в таблице 1. Использовались кристаллы вольфрама 2,7, 5,6, 8,4 мм, на которые падали электроны со средней энергией $E_e = 26$ ГэВ. Сигналы снимались со сцинтилляционного счетчика толщиной 20 мм, стоящего за кристаллам. Из таблицы видно, что режекция улучшается с увеличением толщины кристалла и увеличении порогового канала. Из рис. 3 и данных работы [6] видно, что ширина ориентационной зависимости коэффициента трансформации спектра $\Delta\Theta$ (определяемая как ширина ориентационной зависимости какого-либо параметра ливня на половине ее высоты) равна ширине ориентационной зависимости того параметра ливня, по которому определялся коэффициент трансформации. Например, ширина ориентационной зависимости β (рис. 3) практически равна ширине ориентационной зависимости энерговыделения из того же кристалла кремния 20 мм и составляет $\Delta\Theta \approx 4$ мрад [6]. Кроме того, форма кривой 1 на рис. 2 соответствует форме зависимости средней множественности заряженных частиц, выходящих из кристалла вольфрама 1 мм при угле $\Theta = 0,9$ мрад (угол близкий к углу ориентации вдоль оси <111>) [6].

Таким образом, интенсивное развитие ливня в ориентированном кристалле приводит к изменению формы отклика детектора по отношению к обычному ливню. Использование коэффициента трансформации спектра В позволяет определять степень отличия аномальных ливней от обычных и показывает, ЧТО параметры аномальных ливней (энерговыделение, множественность N_e и N_γ) сильно зависят от энергии частиц, угла ориентации, толщины кристалла (и типа кристалла [1]). Введение коэффициента режекции R дает возможность выделить заданное направление движения частиц и определить вероятность попадания в это направление частиц с других направлений. В и R можно использовать для определения степени отличия обычных ливней при изменении энергии частиц в случаях аморфного конвертора перед детектором.

Авторы выражают благодарность Е.И. Тамму и Е.И. Малиновскому за поддержку работы, В.И. Сергиенко за практическое руководство и организацию работ.

8

ЛИТЕРАТУРА

- V.N. Baier, V.M. Katkov, V.M. Strakhovenko Nucl. Instr. and Meth. B 119 (1996) 131.
- V.A. Baskov, V.A. Khablo, V.V. Kim, I.V. Konorov, V.I. Sergienko, V.B. Ganenko, V.A. Guschin, L.Ya. Kolesnikov, A.L. Rubashkin, Yu.V. Zebrovsky, O.V. Chupikov, B.I. Luchkov, V.Yu. Tugaenko, V.A. Maisheev Rad. Eff. and Def. in Sol. 25 (1993) 25.
- V.A. Baskov, V.A. Khablo, V.V. Kim, B.A. Luchkov, V.I. Sergienko, V.Yu. Tugaenko Nucl. Instr. and Meth. B 145 (1998) 92.
- K. Kirsebom, Yu.V. Kononets, U. Mikkelsen, S.P. Moller, E. Uggerhoj, T. Worm, C. Biino, K. Elsener, S. Ballestrero, P. Sona, S.H. Connell, J.P.F. Sellschop, Z.Z. Vilakazi, A. Apyan, R.O. Avakian, K. Ispirian Nucl. Instr. and Meth. B 135 (1998) 143.
- 5. V.N. Baier, V.M. Strakhovenko Preprint Budker INP, № 14, Novosibirsk, 2002.
- В.А. Басков, В.В. Ким, Б.И. Лучков, В.Ю. Тугаенко, В.А. Хабло Препринт ФИАН, № 9, Москва, 2005.
- 7. В.А. Басков, В.В. Ким, В.И. Сергиенко, В.А. Хабло ПТЭ, 1990, **5**, 58.
- В.А. Басков, В.Б. Ганенко, В.А. Гущин, Ю.В. Жебровский, В.В. Ким, Л.Я. Колесников, И.В. Коноров, Б.И. Лучков, В.А. Маишеев, А.Л. Рубашкин, В.И. Сергиенко, В.Ю. Тугаенко, В.А. Хабло Письма в ЖЭТФ, 1990, **52**, 740.
- В.А. Басков, В.Б. Ганенко, В.А. Гущин, Ю.В. Жебровский, В.В. Ким, Л.Я. Колесников, И.В. Коноров, Б.И. Лучков, В.А. Маишеев, А.Л. Рубашкин, В.И. Сергиенко, В.Ю. Тугаенко, В.А. Хабло ПТЭ, 1992, 5, 52.
- В.А. Басков, Б.Б. Говорков, В.В. Ким, Б.И. Лучков, В.И. Сергиенко,
 В.Ю. Тугаенко, В.А. Хабло Письма в ЖЭТФ, 1992, 56, 233.

ПОДПИСИ К РИСУНКАМ:

- Амплитудные спектры сигналов с черенковского счетчика, стоящего за кристаллом кремния (t_{Si} = 20 мм; T = 293°K, E_γ = 3 ÷ 5 ГэВ): 1 – кристалл разориентирован (Θ ≥ 200 мрад); 2 – кристалл ориентирован вдоль оси <110> (Θ = 0 мрад).
- Зависимость коэффициента трансформации спектра β от энергии γ-квантов и электронов (t_w = 1 мм; T = 77°K, ось ориентация <111>): 1 - γ-кванты; 2 электроны.
- 3. Зависимость коэффициента трансформации спектра β от угла ориентации Θ ($t_{Si} = 20$ мм; $T = 293^{\circ}$ K; $E_{\gamma} = 3 \div 5 \Gamma_{2}$ B; ось ориентации <110>).
- 4. Зависимость коэффициента режекции R от энергии γ -квантов (t_w = 1 мм; T = 77°K, ось ориентация <111>). Режекция определена для $\Theta \ge 0$ по отношению к $\Theta = 23$ мрад при j = <i>+1. $\sigma_{<i>}$.

<u>Таблица 1</u> Уровни режекции (R) и эффективности регистрации электронов

> (ε_{o}) сцинтилляционным счетчиком за кристаллом вольфрама в зависимости от толщины кристалла (t_{w}) (ось ориентации <111>; T = 293°K; E_{e} = 26 Гэв).

	t _w = 2,7 мм	t _w = 5,8 мм	t _w = 8,4 мм
$R(1 \cdot \sigma_{\langle i \rangle})$	$0,454 \pm 0,027$	$0,202 \pm 0,030$	$0,192 \pm 0,033$
ε ₀ ,%	80,3 ±1,5	85,8±2,6	87,3 ± 2,0
$R(2 \cdot \sigma_{})$	0,267 ± 0,021	0,033 ± 0,023	0,036 ± 0,022
€₀,%	69,3 ± 1,4	$67,2 \pm 2,2$	$75,3 \pm 1,8$
$R(3 \cdot \sigma_{})$	$0,144 \pm 0,016$	$0,004 \pm 0,004$	0,001 ± 0,013
€₀,%	$56,2 \pm 1,2$	$36,4 \pm 1,4$	$46,5 \pm 1,3$
$R(4 \cdot \sigma_{\langle i \rangle})$	$0,072 \pm 0,012$		
€₀,%	$42,9 \pm 1,0$		
$R(5 \cdot \sigma_{\langle i \rangle})$	$0,041 \pm 0,009$		
٤٥,%	31,0 ± 0,8		

Рис. 2

Рис. 3

Рис. 4