РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ ИМЕНИ П.Н.ЛЕБЕДЕВА

ПРЕПРИНТ

В.А. БАСКОВ

ПРОДОЛЬНОЕ РАЗВИТИЕ ЭЛЕКТРОМАГНИТНЫХ ЛИВНЕЙ В СПЕКТРОМЕТРЕ НАПРАВЛЕННОГО ДЕЙСТВИЯ

В ПЕЧАТЬ, В СВЕТ!

Зам. директора ФИАН, док. физ. - мат. наук

Гиппиус А.А.

МОСКВА 2011

ПРОДОЛЬНОЕ РАЗВИТИЕ ЭЛЕКТРОМАГНИТНЫХ ЛИВНЕЙ В СПЕКТРОМЕТРЕ НАПРАВЛЕННОГО ДЕЙСТВИЯ

В.А. Басков

Аннотация

Длина продольного развитие электромагнитного ливня от электронов с энергией 26 ГэВ в спектрометре направленного действия, состоящего из ориентированного вдоль оси <111> кристаллического вольфрамового конвертора и составного черенковского ливневого спектрометра, меньше по сравнению с длиной развития стандартного ливня от 20 до 30% при толщинах конвертора от 2.7 до 8.4 мм.

LONGITUDINAL DEVELOPMENT OF ELECTROMAGNETIC SHOWERS IN THE DIRECTED ACTION SPECTROMETER

V.A. Baskov

Abstract

The length longitudinal development of an electromagnetic shower from electrons with energy 26 GeV in a directed action spectrometer consisting of tungsten crystal converter aligned along <111> an axis and a compound cherenkov shower spectrometer, is less in comparison with length of development of a standard shower from 20 up to 30 % at thickness of the converter from 2.7 up to 8.4 mm.

1 - 115549, г. Москва, Национальный исследовательский ядерный университет "МИФИ" (Moscow, National research nuclear university "*MEPhI*")

baskov@x4u.lebedev.ru

Экспериментальные установки, эксплуатирующиеся на современных ускорителях высоких энергий, содержат отдельные спектрометры или "стенки" спектрометров полного поглощения, которые регистрируют e^- , e^+ и γ -квантов, образовавшиеся в мишени при взаимодействии с ней первичного пучка или при столкновении встречных пучков. Основными целями спектрометров и "стенок" являются определение энергий и координат e^- , e^+ и γ -квантов и совместно с другими детекторами установки восстановление продуктов взаимодействия первичной частицы с мишенью, дальнейшее понимание механизма взаимодействия. Увеличение энергии ускорителей приводит к увеличению продольных размеров спектрометров и спектрометров, входящих в "стенки", которые в свою очередь приводят к ухудшению энергетического и пространственного разрешений спектрометров из-за возникновения неоднородностей, приводящих к потерям света [1].

Применение в экспериментальных установках компактных спектрометров нового типа – спектрометров направленного действия на основе ориентированных кристаллов (*СНД*) является хорошей альтернативой.

 $CH\mathcal{A}$ – спектрометры полного поглощения регистрируют e^- , e^+ или γ кванты в заданном направлении и представляют из себя спектрометры с ориентированными непрозрачными или прозрачными кристаллическими конверторами, располагающиеся перед спектрометрами, или спектрометры на основе непосредственно прозрачных кристаллов. Кристаллографическая ось конвертора или прозрачного кристалла-спектрометра должна быть направлена на источник частиц – на мишень или область взаимодействия в случае встречных пучков. В качестве конвертера в зависимости от целей установки и назначения *СНД* можно использовать различные кристаллы, как непрозрачные – кремний (*Si*), германий (*Ge*), вольфрам (*W*) и т.д., так прозрачные – вольфрамат (*PbWO*₄), гранат (*Gd*₃*Ga*₅*O*₁₂) и т. д. [2-4].

Теоретические и экспериментальные исследования электродинамических процессов рождения e^+e^- пар γ -квантами, излучения электронами (позитронами)

3

и развития электромагнитных ливней в ориентированных кристаллах показали, что наиболее эффективно *СНД* можно использовать при энергиях частиц, при которых формируется область "постоянного сильного поля" (*ПСП*), в которой значительно возрастают сечения электродинамических процессов и развиваются аномальные электромагнитные ливни [2-6].

Область ПСП формируется при углах входа частиц в кристалл $\Theta << \Theta_{\Pi C\Pi}$ = V/mc^2 (Θ - угол между импульсом частицы и осью или плоскостью кристалла; V – масштаб потенциала оси или плоскости; m - масса электрона; c - скорость света). Для каждой оси (плоскости) кристалла, вдоль которой происходит ориентация, существует своя энергия, при которой возникает область ПСП. Например, для ориентированного вдоль оси <111> кристалла вольфрама ($T_W = 293^\circ K$) область ПСП формируется при энергии электронов $E_e \approx 30 \ \Gamma \Rightarrow B$, а для ориентированного вдоль оси <110> кристалла кремния ($T_{Si} = 293^\circ K$) область ПСП возникает при $E_e = 150 \ \Gamma \Rightarrow B$ [5].

В работе проведен анализ продольного развития электромагнитных ливней от электронов в *СНД*, состоящего из ориентированного кристалла вольфрама и составного черенковского ливневого спектрометра (*СЧЛС*) [3,4,6].

Электромагнитные ливни в ориентированных кристаллах изучались на электронном канале $U\Phi B \mathcal{P}$ на установке "*Каскад*". В исследованиях использовались кристаллы вольфрама толщиной 2.7, 5.8 и 8.4 мм ($X_0 = 3.5$ мм, X_0 - радиационная длина). Ориентация кристаллов при комнатной температуре $T_W = 293^{\circ}K$ осуществлялась вдоль оси <111>. Кристаллы считались разориентированными при $\Theta_{\Pi C\Pi} \ll \Theta = 20 \div 30$ мрад. Мозаичность кристаллов составляла $\Delta \Theta_W \approx 1$ мрад. В эксперименте использовался пучок электронов с энергией $E_e = 26 \Gamma \mathcal{P}B$ с расходимостью $|\upsilon| \leq 0.1$ мрад по основанию [6].

Ливень, выходивший из кристалла, продолжал развиваться *СЧЛС*, стоявший в 65 см за кристаллом. *СЧЛС* состоял из 10 независимых светоизолированных счетчиков (радиаторов) из свинцового стекла $T\Phi$ -1. Счетчики имели одинаковый размер 100×100 мм² и толщину 1X₀. Для сбора оставшейся части ливня за СЧЛС был помещен черенковский спектрометр ЧС толщиной $15X_0$. ЧС имел шестигранный радиатор из свинцового стекла $T\Phi$ -1 с диаметром вписанной окружности 180 мм [7].

На рис. 1 и 2 приведены дифференциальные (каскадные) и интегральные кривые развития электромагнитных ливней от электронов, выходящих из разориентированных (*a*) и ориентированных (*б*) кристаллов вольфрама и далее продолжающих развиваться в *СЧЛС* и *ЧС*. На рисунках по оси абсцисс отложена толщина спектрометра *СЧЛС* в радиационных длинах (для последней точки рис. 2 толщина спектрометра равна сумме толщин *СЧЛС* и *ЧС* [7]). По оси ординат на рис. 1 отложена средняя энергия ливня, оставленная им в каждом счетчике спектрометра, а на рис. 2 отложена средняя суммарная энергия ливня, выделенная в спектрометре соответствующей толщины с учетом энергии ливня, оставленной в кристаллах вольфрама. На рис. *1а* и *2а* приведена калибровочная кривая, когда перед *СЧЛС* отсутствует кристаллический конвертор (*t*_W = 0). В этом случае начало развития ливня приходиться на первый счетчик *СЧЛС*. Статистические ошибки на рис. *1* и *2* не приведены, поскольку составляли менее 1%.

Если перед *СЧЛС* находится разориентированный кристалл вольфрама, являющимся практически аморфным веществом, начало развития ливня и начало соответствующей каскадной кривой приходится на кристалл. По мере наращивания толщины кристалла начало развития ливня все дальше сдвигается от *СЧЛС*. На рис. *1а* и *2а* хорошо видно, что по мере наращивания толщины кристалла каскадная и интегральная кривые сдвигаются относительно своего первоначального положения (калибровочных кривых). Экстраполяция кривых в область начала развития ливня, то есть в кристалл, осуществлялась с помощью аналитической формулы, используемой в работе [6]: $f(t) = ct^{\alpha} exp(-t/\beta)$, где c – нормировочный коэффициент, α и β – подгоночные параметры.

При ориентации кристалла характер электромагнитного ливня в кристалле меняется, что сказывается на изменении отклика спектрометра за кристаллом, выраженном в изменении каскадных и интегральных кривых [4-6,8,9]. На рис. 16

5

и 26 видно увеличение энерговыделения в первых счетчиках СЧЛС и уменьшении энерговыделения в счетчиках СЧЛС за максимумом каскадной кривой, ещё большая сдвижка каскадных и интегральных кривых к началу развития ливня. Особенно заметно увеличение энерговыделения для толстых кристаллов 5.8 и 8.4 мм. В отличие от случая разориентированного кристалла, регистрация 90-95% энергии ливня осуществляется меньшим числом счетчиков СЧЛС или соответствующей толщиной спектрометра. Рис. 26 показывает, что число счетчиков уменьшается с 15 до ≈ 12 ($t_w = 2.7 \text{ мм}$) и до ≈ 10 ($t_w = 8.4 \text{ мм}$), что от 20% до 30% меньше толщины обычного спектрометра (t_w – толщина разориентированного кристалла вольфрама).

Величина превышения энерговыделения при ориентации кристалла ΔE_{o} относительно разориентации ΔE_p представлена на рис. 3, где $\Delta E_{p(0)}$ – величина энергии, поглощенная разориентированным (ориентированным) кристаллом. Для сравнения, на этом же рисунке показана зависимость относительного энерговыделения от толщины для кристаллов граната и вольфрамата [8]. Превышение энерговыделение $\Delta E_{o}/\Delta E_{p} > 1$ наблюдается во всём диапазоне толщин кристаллов $t_{\text{кристалл}} \leq 10X_0$ и наиболее сильное для $t_{\text{кристалл}} \leq X_0$. Это означает, что даже в кристаллах большой толщины, на много порядков превосходящих длину когерентности, развитие ливней частично идёт по когерентным механизмам излучения у-квантов электронами (позитронами) и рождения e^+e^- пар. С увеличением толщины ориентированных кристаллов происходит уменьшение энергии ливневых частиц и их рассеяние на значительные углы, вклад когерентных процессов в ливнях уменьшается. В результате, хотя абсолютное значение превышения энерговыделения в ливнях в ориентированном кристалле относительно энерговыделения для разориентированного кристалла увеличивается с толщиной кристаллов (рис. 3), относительное энерговыделение в ориентированном кристалле при этом уменьшается. С другой стороны, влияние когерентного характера аномального ливня, развивающегося в тонком ориентированном кристалле вольфрама $t_{\rm W} = 0.02X_0$, заметно даже на отклике *ЧС* толщиной *15X*₀ в изменении указанного характера энерговыделения [9].

СНД можно использовать и для регистрации γ -квантов, поскольку сдвижка каскадной кривой также наблюдается при развитии ливней от γ -квантов с энергиями 9 - 27 ГэВ в ориентированном вдоль оси <111> кристалле вольфрама толщиной 1 мм ($T_{\rm W} = 77^{\circ}K$) [10].

Таким образом, аномальные электромагнитные ливни, возникающие в $CH\mathcal{I}$ от электронов и γ -квантов с энергиями в десятки Γ эB, изменяют отклик спектрометра, находящегося за кристаллом, относительно отклика на стандартные ливни, сказывающийся в уменьшении продольного развития ливня, что в свою очередь ведет к уменьшению толщины спектрометра и всего $CH\mathcal{I}$.

ЛИТЕРАТУРА

- 1. Brown R.M., Cockerill D.J.A., Nucl. Instr. and Meth. in Phys. Res. (A), in press (2011) (<u>http://sceincedirect.com/sceince/article/pii/S0168900211005572</u>).
- 2. Baier V.N., Katkov V.M., Strakhovenko V.M., Nucl. Instr. and Meth. in Phys. Res., V. A250, 514 (1986).
- 3. Басков В.А., Ганенко В.Б., Гущин В.А. и др., Письма в ЖЭТФ, № 50, 395 (1989).
- 4. *Baskov V.A., Khablo V.A., Kim V.V. et al.*, Nucl. Instr. and Meth. in Phys. Res., **V. B145**, 92 (1998).
- 5. Uggerhoj U.I., Reviews of Modern Physics, V. 77, 1131 (2005).
- 6. Басков В.А., Ким В.В., Лучков Б.И. и др., Препринт ФИАН № 31, Москва (2006).
- 7. Басков В.А., Белоусов А.С., Ким В.В. и др., ПТЭ, №5, 66 (2011).
- 8. Baskov V.A., Bugorsky A.P., Kachanov V.A. et al., Phys. Lett., V. B456, 86 (1999).
- 9. Басков В.А., Ким В.В., Хабло В.А., ПТЭ, №4, 13 (2010).
- 10. Басков В.А., Ганенко В.Б., Жебровский Ю.В. и др., Письма в ЖЭТФ, № 57, 282 (1993).

<\DeltaE>, ГэВ

Рис. 1 Дифференциальные (каскадные) кривые развития электромагнитного ливня в СНД от электронов с энергией E_e = 26 ГэВ при разных толщинах разориентированных (*a*) и ориентированных (*б*) кристаллов вольфрама (<ΔE> – средняя энергия ливня, выделившаяся в каждом счетчике СЧЛС; t_w и t_{CЧЛС} – толщины кристаллов и СЧЛС, соответственно).

<Е>, ГэВ

Рис. 2 Интегральные кривые развития электромагнитного ливня в СЧЛС и ЧС от электронов с энергией $E_e = 26 \Gamma \Im B$ при разных толщинах разориентированных (*a*) и ориентированных (*б*) кристаллов вольфрама (<*E*> - средняя энергия ливня, зарегистрированная спектрометром; t_W и $t_{CЧЛС+ЧС}$ – толщины кристаллов и спектрометров СЧЛС+ЧС, соответственно).

Рис. З Зависимость относительного энерговыделения ливня в кристаллах вольфрама, граната и вольфрамата от толщины кристаллов ($t_{\text{кристалл}}$) ($\Delta E_{\text{p(o)}}$ – энерговыделение ливня при разориентации (ориентации) кристалла, энергия электронов $E_{\text{e}} = 26 \Gamma_{3}B$).