РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ ИМЕНИ П.Н.ЛЕБЕДЕВА

ПРЕПРИНТ

В.А. БАСКОВ, В.В. КИМ, Б.И. ЛУЧКОВ, В.Ю. ТУГАЕНКО, В.А. ХАБЛО

ВЛИЯНИЕ ТЕМРЕРАТУРЫ ОРИЕНТИРОВАННОГО КРИСТАЛЛИЧЕКОГО КОНВЕТРОРА НА ОТКЛИК СПЕКТРОМЕТРА

В ПЕЧАТЬ, В СВЕТ!

Зам. директора ФИАН, док. физ. - мат. наук

Гиппиус А.А.

МОСКВА 2011

ВЛИЯНИЕ ТЕМПЕРАТУРЫ ОРИЕНТИРОВАННОГО КРИСТАЛЛИЧЕСКОГО КОНВЕРТОРА НА ОТКЛИК СПЕКТРОМЕТРА

В.А. Басков^{*}, В.В. Ким, Б.И. Лучков¹, В.Ю. Тугаенко¹, В.А. Хабло

Аннотация

Охлаждение 1 мм ориентированного вдоль оси <111> кристаллического вольфрамового конвертора перед электромагнитным спектрометром толщиной $25X_0$ и регистрирующего ливни от электронов $28 \ \Gamma \Rightarrow B$ до температуры $77^{\circ}K$ приводит к уменьшению радиационной длины кристалла на $\sim30\%$, сдвижке каскадной кривой развития ливня в спектрометре на $\sim7\%$ и улучшает энергетическое разрешение спектрометра на $\sim5\%$ по сравнению с аналогичными параметрами при температуре кристалла $293^{\circ}K$.

INFLUENCE TEMPERATURE FOCUSED CRYSTAL CONVERTER ON THE RESPONSE OF THE SPECTROMETER

B.A. Baskov *, V.V. Kim, B.I. Luchkov¹, V.Yu. Tugaenko¹, V.A. Khablo

Abstract

Cooling of 1 mm crystal tungsten converter aligned along <111> an axis before an electromagnetic spectrometer thickness $25X_0$ and registering showers from electrons 28 GeVup to temperature 77°K leads to reduction of radiating length of a crystal by ~30 %, shifting a cascade curve of development of a showers in a spectrometer on ~7 % and improves the energy resolution of a spectrometer to ~5 % in comparison with similar parameters at temperature of a crystal 293°K.

1 - 115549, г. Москва, Национальный исследовательский ядерный университет "МИФИ" (Moscow, National research nuclear university (*MEPhI*))

* baskov@x4u.lebedev.ru

Отклик спектрометра, регистрирующего электромагнитные ливни от электронов (позитронов) и γ -квантов с энергией $E \ge 0.1 \ \Gamma \ni B$ ("стандартные" ливни), определяется интегральной и каскадной кривыми развития ливня, которые, в свою очередь, определяют основные свойства спектрометра (продольный и поперечный размеры, энергетическое разрешение). На отклик спектрометра, регистрирующего "стандартные" ливни, влияют в основном два фактора: энергия частицы и свойства рабочего вещества спектрометра [1,2].

Отклик спектрометра, регистрирующего электромагнитные ливни, развивающиеся в поле оси или плоскости ориентированного кристалла ("аномальные" ливни), отличается от отклика спектрометра, регистрирующего "стандартные" ливни. В этом случае, на отклик спектрометра дополнительно влияют: тип кристалла (потенциал оси или плоскости, вдоль которой развивается ливень), степень ориентации относительно оси или плоскости, температура кристалла [*3*,*4*].

Теоретические работы, связанные с изучением электродинамических процессов излучения электронов (позитронов) и рождения e^+e^- пар γ -квантами высоких энергий при углах входа в кристаллы $\Theta \ll V/mc^2$ предсказали зависимость процессов от температуры [3]. Экспериментальные работы, выполненные в ΦU -AHe, подтвердили, что вероятность рождения e^+e^- пар γ -квантами со средней энергией $\langle E_{\gamma} \rangle = 18 \Gamma \beta B$ и выход величины излучения электронами с энергией E = $28 \Gamma \beta B$ в области $\Pi C\Pi$ при охлаждении ориентированного 1 *мм* кристалла вольфрама с температуры $T_1 = 293^{\circ}K$ до $T_2 = 77^{\circ}K$ возрастают на $\sim 15\%$ [5]. Тем не менее, поведение "аномальных" ливней в ориентированном кристалле и степень изменения отклика спектрометра, регистрирующего ливни, при изменение температуры кристалла оставалось неясным.

Данная работа представляет экспериментальные результаты исследований "аномальных" ливней и отклика электромагнитного спектрометра с конвертором из ориентированного кристаллического вольфрамового конвертора от температуры конвертора.

Работа была выполнена на электронном канале ускорителя ИФВЭ на уста-

новке "*Каскад*" [4,6]. В качестве конвертора использовался кристалл вольфрама толщиной *1 мм*, ориентируемый вдоль оси <*111*> (радиационная длина вольфрама $X_0 = 3.5 \text{ мм}$). Кристалл считался ориентированным при $\Theta_0 = 0$ и разориентированным (аморфным) при $\Theta_p \ge 20 \text{ мраd}$. Мозаичность кристалла составляла *1* мраd. Для регистрации ливней использовался спектрометр, состоящий из составного черенковского ливневого спектрометра (*СЧЛС*) (*10* независимых радиаторов толщиной *1X*₀) и черенковского спектрометра (*ЧС*) (толщиной *15X*₀). Исследовались характеристики ливней, выходящих из ориентированного кристалла, и отклик спектрометра, регистрирующего эти ливни, при комнатной температуре кристалла $T_1 = 293^\circ K$ и при температуре жидкого азота $T_2 = 77^\circ K$.

На рис. 1 представлены каскадные кривые развития электромагнитного ливня в СЧЛС от электронов при разных температурах разориентированного (зависимости 1,2) и ориентированного (зависимости 3,4) кристаллического конвертора перед СЧЛС (K – калибровочная кривая, полученная при отсутствии перед СЧЛС кристаллического конвертора). Разориентированный конвертор при T_1 перед СЧЛС сдвигает каскадную кривую развития электромагнитного ливня к началу развития в кристалл на величину толщины кристалла (зависимость 1). Ориентация кристалла при T_1 сдвигает каскадную кривую ещё больше в сторону начала развития ливня (зависимость 3) [4]. Охлаждение разориентированного конвертора до T_2 сдвигает каскадную кривую на $\approx 0.1X_0$ ($\approx 1.5\%$) в сторону начала развития ливня (зависимость 4) к началу развития на $\sim 15\%$ относительно зависимости 2 (разориентированный кристалл) или на $\sim 7\%$ относительно каскадной кривой при ориентации кристалл и T_2 (зависимость 3).

В таблице *1* представлено положения максимума каскадной кривой и величина сдвижки кривой при ориентации и разориентации кристалла при разных температурах. Величина $\Delta t = t_{\text{max p}} - t_{\text{max o}}$, определяющая разность положений максимума каскадной кривой в *СЧЛС* при ориентированном конверторе ($t_{\text{max p}}$) относительно разориентированного ($t_{\text{max o}}$), является и величиной, на которую

увеличивается эффективная толщина конвертора $t_{W \to \phi \phi} = t_W + \Delta t (t_{W \to \phi \phi} - толщина конвертора при которой происходит наиболее эффективное взаимодействие частиц с кристаллом; <math>t_W$ – толщина конвертора при разориентации кристалла).

Увеличение эффективной толщины конвертора $t_{W \ 3\phi\phi}$ означает уменьшение радиационной длины ориентированного кристалла $X'_0 = X_0 \cdot (t_W/t_W \ 3\phi\phi)$ [3-5]. Рис. 2 представляет зависимость радиационной длины кристалла от температуры. Видно, что охлаждение ориентированного конвертора с T_1 до T_2 приводит к уменьшению радиационной длины на $\approx 30\%$. Охлаждение разориентированного конвертора с T_1 до T_2 (зависимость 2 на рис. 1), приводит к незначительной сдвижке каскадной кривой и показывает изменение радиационной длины конвертора при данном угле входа частиц в кристалл (зависимость 1 на рис. 2). Изменение радиационной длины кристалла при в этом случае говорит о том, что при температуре T_2 кристалл уже не является разориентированным, то есть указывает на увеличение ширины ориентационной зависимости развития ливня в кристалле.

На рис.3 представлены зависимости среднего энерговыделения ливня в первом счетчике *СЧЛС* для T_1 и T_2 от угла ориентации конвертора Θ , из которого видно, что охлаждении конвертора до T_2 увеличивает ширину ориентационной зависимости на $\Delta \Theta \approx 1$ мрад (под шириной ориентационной зависимости $\Delta \Theta$ принимается полная ширина ориентационной зависимости измеряемого параметра ливня (например, энерговыделения) на половине высоты).

Охлаждение конвертора с T_1 до T_2 улучшает энергетическое разрешение спектрометра. На рис. 4 представлены зависимости относительного энергетического разрешения спектрометра $C 4 \pi C + 4 C$ общей толщиной $25X_0$ с разориентированным (зависимость 1) и ориентированным конвертором (зависимости 2 и 3) ($\delta = \sigma/\langle E \rangle$, σ - среднеквадратичное разрешение, $\langle E \rangle$ - средняя энергия ливня, выделившаяся в спектрометре) от энергии электронов E = 26 и $28 \Gamma B$ и температуры. Точки (•) зависимости 1 были измерены, для точек (п) на зависимостях 2 и 3 были сделаны оценки. Оценки были произведены следующим образом: разрешение спектрометра $C 4 \pi C + 4 C$ при разориентированном кристалле определяется как $\sigma/\langle E \rangle = \alpha + k/E^{-1/2} = 0.012 + 0.061/E^{-1/2}$ [4,6]. Если предположить, что при ориентации кристалла постоянный член α , определяющий систематические ошибки измерений спектрометра, не меняется, то коэффициент k при $E = 28 \Gamma \Im B$ и T_1 для зависимости 2 (кристалл ориентирован), с учетом измеренного разрешения $\sigma/\langle E \rangle = 2.11\%$, стал равным k = 0.048, а для T_2 и этой же энергии при измеренном разрешении $\sigma/\langle E \rangle = 2.00\%$ стал равным k = 0.042 (улучшение разрешения при уменьшении температуры составило ~5%). Отсюда относительное энергетическое разрешение при $E = 26 \Gamma \Im B$ для T_1 и T_2 составило $\delta \approx 2.14\%$ и 2.02% соответственно.

Таким образом, температура ориентированного кристалла влияет на развитие электромагнитных ливней. Уменьшение температуры ориентированного кристалла приводит к усилению эффектов развития электромагнитных ливней в кристалла (увеличению энерговыделения, уменьшению радиационной длины кристалла, увеличению ширины ориентационной зависимости развития ливня) и к изменению отклика спектрометра, регистрирующего электромагнитные ливни, выходящие из кристалла (уменьшению длины продольного развития ливня, улучшению энергетического разрешения). Уменьшение температуры ориентированного кристалла на значительную величину (с комнатной 293° K до температуры жидкого азота 77°K, то есть на ~200°K (~70%)) ведет к изменению эффектов развития ливней в зависимости от параметра на 6% - 30%. Данные измерения подтверждают ранние измерения зависимости электродинамических процессов от температуры [5] и предсказания работы [3] по усилению ориентационных эффектов от температуры.

Авторы выражают благодарность Е.И. Тамму и Е.И. Малиновскому за поддержку работы; В.И. Сергиенко за научное руководство и организацию работ.

6

ЛИТЕРАТУРА

- 1. Словинский Б., Физика элементарных частиц и атомного ядра (ФЭЧАЯ), т.25, выпуск 2, Дубна, 417 (1994).
- 2. Калиновский А.Н., Мохов Н.В., Никитин Ю.П., Прохождение частиц высоких энергий через вещество, Энергоатомиздат, Москва (1985).
- 3. Uggerhoj U.I., Reviews of Modern Physics, V. 77, 1131 (2005).
- 4. Басков В.А., Ким В.В., Лучков Б.И. и др., Препринт ФИАН №31, Москва (2006).
- 5. Басков В.А., Ганенко В.Б., Жебровский Ю.В. и др., Тезисы докладов XIX Всесоюзного совещания по физике взаимодействия заряженных частиц с кристаллами, *МГУ*, 84-86 (1989).
- 6. Басков В.А., Белоусов А.С., Ким В.В. и др., ПТЭ, №5, 66 (2011).

Таблица 1. Положение максимума каскадной кривой развития ливня от электронов с $E = 28 \ \Gamma \Rightarrow B$ в *СЧЛС* при разориентированном и ориентированном конверторе перед *СЧЛС* в зависимости от температуры конвертора.

Положение максимума каскадной кривой в СЧЛС	$t_{ m max \ p}, X_0$ ($\Theta_{ m p}$ = 20 мрад)	$t_{ m max \ o}, X_0$ ($\Theta_{ m o} = 0$ мрад)	$\Delta t = t_{\max p} - t_{\max 0}, X_0$
reimiepurijpu			
$T_1 = 293^{\circ}K$ (калибровка)	7.1±0,1		
$T_1 = 293^{\circ}K$	$6.8\pm0,1$	$6,3 \pm 0,1$	$0,5\pm0,1$
$T_2 = 77^{\circ}K$	$6,7 \pm 0,1$	$5,9\pm0,1$	$0,8\pm0,1$

Рис. 1 Каскадные кривые развития электромагнитного ливня в *СЧЛС* от электронов с энергией $E = 28 \ \Gamma \Rightarrow B$ при разных температурах разориентированного (1,2 - $\Theta_p = 20 \ mpad$) и ориентированного (3,4 – $\Theta_o = 0 \ mpad$) вдоль оси <111> кристаллического 1 мм вольфрамового конвертора (< ΔE > - средняя энергия ливня, выделившаяся в счетчиках *СЧЛС*; *К* - кристалл перед *СЧЛС* отсутствует; t_W и $t_{CЧЛC}$ – толщины кристалла и *СЧЛС* в единицах X_0 , соответственно; *K*, 1,3 - $T_1 = 293^\circ K$; 2,4 – $T_2 = 77^\circ K$).

Рис. 2 Зависимость радиационной длины: *1* - разориентированного ($\Theta_p = 20$ *мрад*) и *2* - ориентированного ($\Theta_o = 0$ *мрад*) вдоль оси <*111*> кристаллического *1 мм* вольфрамового конвертора перед СЧЛС от температуры при энергии электронов $E = 28 \Gamma_{3}B (3 - \text{аморфный вольфрам}).$

Рис. 3 Зависимость среднего энерговыделения ливня ($<\Delta E_1 >$) в первом счетчике *СЧЛС* от угла ориентации (Θ) конвертора относительно оси <111> при энергии электронов $E = 28 \Gamma \Rightarrow B$: 1 - $T_1 = 293^\circ K$; 2 – $T_2 = 77^\circ K$.

Рис. 4 Зависимость относительного энергетического разрешения спектрометров *СЧЛС*+*ЧС* общей толщиной $25X_0$ ($\delta = \sigma/\langle E \rangle$, σ - среднеквадратичное разрешение, *<E>* - средняя энергия ливня, выделившаяся в спектрометре) с *1 мм* с разориентированным (*1*), и ориентированным вдоль оси *<111>* (2 и *3*) кристаллическим вольфрамовым конвертором от энергии электронов: *1* и *2* - *T*₁ = *293°K*; *3* - *T*₂ = *77°K* (•, \circ , Δ – измерения; \Box - оценка).